
Rethinking Transport Layer Design for Distributed
Machine Learning

Jiacheng Xia1 Gaoxiong Zeng1 Junxue Zhang1,2 Weiyan Wang1
Wei Bai3 Junchen Jiang4 Kai Chen1,5

1SING Lab, Hong Kong University of Science and Technology
2CLUSTAR 3MSRA 4University of Chicago 5Peng Cheng Lab

ABSTRACT
Motivated by the increasing scale of data, we see a growing
need of high performance distributed machine learning sys-
tems. Many research works are being proposed to improve
distributed machine learning performance.

In this paper, we call upon this community to rethink trans-
port layer solutions for distributed machine learning due to
their stringent network requirements and special algorith-
mic properties. Distributed machine learning jobs generate
bursty tra�c when synchronizing parameters and a long
tail �ow can signi�cantly slow down the complete training
process. Meanwhile, in contrast to other distributed system
applications, we �nd that machine learning algorithms are
bounded-loss tolerant: randomized network data losses below
a certain fraction (typically 10%–35%) will do little harm to
the end to end job performance. Motivated by this observa-
tion, we highlight new opportunities to design bounded-loss
tolerant transport to optimize the performance of distributed
machine learning. By intentionally ignoring some packet
losses, we can avoid unnecessary loss retransmissions, thus
reducing the tail �ow completion time. Following this princi-
ple, our preliminary results show that a simpli�ed protocol
can give 1.1–2.2x speedup on di�erent distributed machine
learning tasks.

CCS CONCEPTS
• Networks→ Network protocols.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’19, August 17–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00
https://doi.org/10.1145/3343180.3343186

KEYWORDS
network protocols, distributed machine learning

ACM Reference Format:
Jiacheng Xia1 Gaoxiong Zeng1 Junxue Zhang1,2 Weiyan Wang1
and Wei Bai3 Junchen Jiang4 Kai Chen1,5. 2019. Rethinking Trans-
port Layer Design for Distributed Machine Learning. In 3rd Asia-
Paci�c Workshop on Networking 2019 (APNet ’19), August 17–18,
2019, Beijing, China. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3343180.3343186

1 INTRODUCTION
Modern machine learning trains complex models (e.g., deep
neural networks) by iteratively applying stochastic gradi-
ent descent (SGD) to re�ne the model parameters [7]. This
process, however, is known to be frustratingly slow: despite
being easily parallelizable, the training algorithms must syn-
chronize massive amounts of parameter updates across dis-
tributed workers (10s to 100s) at the end of each iteration, cre-
ating potential congestion and in the worst case, 1-2 orders
of magnitudes of slowdowns on the entire training process.

Therefore, trimming the communication overhead for ML
training has gained much attention, in both ML and sys-
tems communities. Many ML-inspired solutions exploit the
property that SGD-based training produces equally accurate
models, even in the presence of a non-trivial amount of de-
layed, missed or lower-precision updates [4, 17, 23, 24]. In the
meantime, systems community has explored alternative com-
munication patterns to mitigate tra�c hotspots [16, 20, 25].
While being e�ective, neither approach addresses the real cul-
prit: tail �ow completion time, which are caused by transient
tra�c bursts (due to self-in�icted or competing applications)
and plague modern high-speed datacenters [5, 26]. Thus,
compressing parameter updates or optimizing parameter
communication patterns is necessarily incomplete.
Why a transport-layer solution? In this paper, we argue
that a transport-layer solution is fundamentally needed to
trim the communication overhead in ML training. The key
insight is that we can completely avoid tail �ow completion
time, if the transport layer simply ignores the fraction of

22

APNet ’19, August 17–18, 2019, Beijing, China J. Xia, et al.

data delayed or missed by the network. First, doing so will
not a�ect the training outcome (i.e., same �nal accuracy
and same number of iterations), as long as the amount of
ignored data does not exceed some threshold (typically, 10%�
35%). Second, default transport protocols only o�er “all-or-
nothing” semantics, leaving any solutions above transport
layer unable to circumvent the tail latency. Note that these
arguments do not apply to general data analytic applications
(e.g., MapReduce) in which data communication must be
reliable.
Why a new transport-layer design? These desirable be-
haviors, however, do not match existing transport-layer tech-
niques. The mismatch stems from the bounded loss tolerance
property exhibited by SGD-based training—the utility of a
�ow is determined by the time needed to transfer a prede-
�ned fraction p < 100% of all data, not by the time to transfer
all data. In contrast, TCP and its variants seek to minimize
the time to transfer all data (p = 100%), which inevitably
su�ers from tail latency even under a tiny fraction of packet
delays/losses. UDP, on the other hand, does tolerate tail ef-
fect, but without the guarantee that at least p data must be
delivered, which can result in poor eventual accuracy and/or
require more iterations to converge.
In the rest of this short paper, we start with understand-

ing the initial promise of a better transport-layer approach.
Using large scale NS-3 simulations, we show a bounded-loss
tolerance transport protocol can produce 1.1-2.2x speedup on
di�erent ML tasks under simpli�ed assumptions. The simpli-
�ed protocol signi�cantly reduces the tail latency by tolerat-
ing bounded packet losses. With an analysis on the message
contents of distributed ML jobs, we show a bounded-loss
protocol can provide valid information for ML applications
in presence of discrete packet drops. We then discuss related
works and call upon this community to develop transport
layer solutions for distributed ML leveraging such bounded-
loss tolerance feature.

2 MOTIVATION
We �rst explain how SGD-based algorithms for ML works
and point out that distributed ML su�er from tail latency
(§2.1), describe the bounded loss tolerant feature of distributed
ML (§2.2), and address that application level optimizations
cannot fully bene�t from such a feature (§2.3). This moti-
vates us to design new transport layer protocols leveraging
bounded-loss tolerance.

2.1 Overview of distributed ML
The typical goal of machine learning is minimizing an ob-
jective function value. This value measures the performance
of the ML model, for example, represents the error rate for
a classi�cation problem. In minimizing the objective value,

…

…

Communication (parameter distribution + aggregation)

Computation (forward + backpropagation)

Iteration 1 Iteration 2

Worker 1 network

Worker 1 compute

Worker 2 network

Worker 2 compute

Time

Figure 1: Common pattern of distributed ML jobs.
Workers need to wait for other workers to �nish the
current iteration before starting the next iteration.

Model RNN MLP MF CNN
Slowdown (JCT-tail / JCT-avg) 1.1 1.77 1.93 1.32
Table 1: TCP’s tail FCT slows down distributed ML

SGD-based algorithms [7, 14, 18] are used. Such algorithms
run for multiple iterations, in each iteration, it measures
the objective value and adjusts the model to greedily reduce
objective value in the following iteration.

The keymetric for measuring the quality of machine learn-
ing job is convergence, i.e., model loss on validation dataset (a
part of data not involved in training the model) to be stably
low [12]. A lower loss value at convergence represents better
application level performance.
To handle huge datasets, synchronized distributed train-

ing is often used. In distributed training process, multiple
worker nodes train the same model. In each iteration, work-
ers fetch the current parameters of the models, trains the
model locally and exchange their results to update a global
model, as �gure 1 shows. The major content in communica-
tion in distributed ML can be viewed as a vector of �oating
point numbers describing the model.
DistributedML su�ers from tail latency. To keep work-
ers’ model up-to-date, model is synced in every iteration. At
the beginning and end of each iteration, multiple �ows are
generated almost simultaneously to exchange data among
workers, generating bursty network tra�c.Meanwhile, many
MLmodels are trained under strong synchronization require-
ments, i.e., all workers need to update their parameters prior
to starting next iteration. Therefore, the performance is de-
termined by the tail completion time of all the �ows in one
iteration.
Under existing transport protocols, the tail completion

time is much larger than average. As existingML frameworks
rely on RDT protocols like TCP to transmit messages [3, 20],

23

Rethinking Transport Layer Design for Distributed Machine Learning APNet ’19, August 17–18, 2019, Beijing, China

MLP

N
or

m
al

iz
ed

 JC
T

0.5

1.0

1.5

2.0

Random Data Loss Probability
0 0.5 1.0

(a) Loss-JCT tradeo� of MLP. JCT limit= 2

RNN

N
or

m
al

iz
ed

 JC
T

1.0

1.5

2.0

Random Data Loss Probability
0 0.5 1.0

(b) Loss-JCT tradeo� of RNN

MLPC
on

v.
 R

ou
nd

40

60

80

100

Random Data Loss Probability
0 0.5 1.0

(c) Loss-Convergence epoch tradeo� of MLP. Epochs limit= 100

RNNC
on

v.
 R

ou
nd

40

60

80

100

Random Data Loss Probability
0 0.5 1.0

(d) Loss-Convergence epoch tradeo� of RNN

Figure 2: Impact of data loss on convergence and JCT

ML jobs encounter a tail latency much higher than average
�ow completion time (FCT). As shown in table 1, compared
to �nishing all TCP �ows within average FCT, the tail FCT
increases the job completion time by 10% to 93%. (Detailed
evaluation setup will be explained in §3.1)

2.2 Opportunities from bounded-loss
tolerance

The tail �ow completion time results from the cost of recov-
ering lost packets. Instead of designing complex mechanism
to recover data losses, we take one step back and ask: Can
we directly ignore some data losses? To give a positive an-
swer, we �rst go through observations that machine learning
achieves same application level performance in presence of
ignored packet losses, and discuss the intuition behind this
phenomenon.
Empirical evidence shows that SGD tolerates bounded

data loss. We simulated the scenario of distributed SGD over
lossy network without retransmitting lost packets: We exe-
cute distributed training on 4 GPUs, within each iteration,
a fraction of the gradients collected from each GPU is ran-
domly marked as lost. The lost probability p start from 0,
adds 5% each time until p = 1. The networking protocol
is TCP when p = 0, and a bounded-loss tolerant protocol
described in §3.1 in other cases. As shown in �gure 2, for the
two di�erent models we select, data loss at certain fraction
results shorter job completion time with same epochs (times
to go through the dataset).

We describe this phenomenon as bounded-loss tolerance
feature of SGD. Speci�cally, random data loss of di�erent
probability p has di�erent impacts on the convergence of a
ML job. There exists probability x1,x2 such that for all p:

• Whenp  x1, job converges with same epochs, leading
to shorter job completion time.

• When x1 < p  x2, job converges but with more
epochs. In this range, larger p leads to longer job com-
pletion time with same performance.

• When p > x2, job cannot converge to baseline value,
i.e., job performance degrades.

As illustrated in �gure 2,
�
x1,x2

�
=

�
15%, 55%

�
for MLP

and
�
10%, 90%

�
for RNN, respectively. selecting p ⇡ x1 gives

the shortest job completion time, in that it tolerates high-
est packet drops without additional computation cost. We
describe x1 as loss tolerance bound.
Reason for bounded-loss tolerance: Machine learning
algorithms such as SGD are inherently approximation algo-
rithms, therefore delivering precise results in each iteration
is not necessary. Due to its greedy loss-reduction strategy,
SGD is capable of �xing the error resulting from certain data
loss in later iterations. However, unbounded data loss might
corrupt ML job’s performance, as under too many data losses,
SGD algorithms may not �nd su�cient information to derive
accurate results. An extreme case would be ML models lose
all intermediate data and SGD cannot make any progress.

24

APNet ’19, August 17–18, 2019, Beijing, China J. Xia, et al.

TCP-100% data
TCP-tolerance bound
Simplified protocol

N
or

m
al

iz
ed

 JC
T

0

0.5

1.0

1.5

Model
RNN MLP MF CNN

(a) Marginal gain for message compression

PS-TCP
RING-TCP
PS-Simplified protocol

N
or

m
al

iz
ed

 JC
T

0

0.5

1.0

1.5

Model
RNN MLP MF CNN

(b) Similar JCT for PS & RING

Simplified protocol TCP

UDP

Better

M
od

el
 L

os
s

0.88

0.90

0.92

0.94

Normalized JCT (MLP)
0.2 0.4 0.6 0.8 1.0 1.2

(c) Potential for bounded-loss tolerance

Figure 3: Comparison of baseline TCP w/ di�erent optimizations for distributed ML
Abbrv. Model Application
MF Matrix Factorization [9] Recommendation
MLP Multi-layer Perceptron [21] Text Classi�cation
CNN ResNet20 [11] Image Classi�cation
RNN LSTM seq2seq [22] Translation

Table 2: Models used for evaluations

Model RNN MLP MF CNN
Loss tolerance bound 0.10 0.15 0.35 0.15
Table 3: Di�erent models tolerates di�erent loss

Model RNN1 RNN2 CNN1 CNN2
Loss tolerance bound 0.10 0.15 0.15 0.15

Table 4: Same model, di�erent data tolerates similar
loss

Finding tolerance bound for di�erent model and data.
We run the models in table 2 and analyzed the running time
until convergence with di�erent data loss rate. As shown in
table 3, di�erent models tolerates di�erent data losses. Ta-
ble 4 is conducted on two di�erent datasets each on di�erent
models. We can see for the same model trained with di�erent
datasets, the loss tolerance bound is similar. Therefore, the
loss tolerance bound can be estimated based on previous
experience.

2.3 The need for new transport layer
solution

An intuitive method to leverage bounded-loss tolerance fea-
ture to accelerate distributedML is to reduce themessage size
at sender side by randomly dropping parameters. However,
this application-level solution only leads to marginal gain, as
the performance of transmitting reduced size messages are
still limited by the long tail transport layer protocols. Other
application level treatments and existing transport layer pro-
tocols also doesn’t solve this problem. This motivates us seek
for new transport level solutions.

Why not dropping parameters directly? One way to
optimize distributed ML with bounded-loss tolerance fea-
ture is to randomly drop a fraction p of data and transfer
the remaining. However, as the reduced data are still sent
through a reliable protocol, the cost of packet loss and recov-
ery cannot be avoided. Figure (3a) illustrates this impairment.
We reduce the parameter size transferred in the application
level to the model’s loss tolerance bound, sending reduced
data with TCP has similar job completion time compared to
sending all data with TCP. The potential of improvement is
much smaller than using a transport layer solution.
Why not better parameter synchronization scheme?
Di�erent parameter synchronization schemes are proposed
for better utilizing the network [16, 20]. These schemes still
depend on transport protocol’s performance and are also
prone to long tail latency. As �gure (3b) shows, using di�er-
ent �ow scheduling optimizations has comparable perfor-
mance in job completion time, and potential performance
gain is much smaller than transport layer solutions.
Why not existing transport protocols? Existing RDT
protocols are prone to the cost of loss recovery (e.g. TCP
timeouts). On the other hand, Unreliable Data Transfer (UDT)
protocols have no guarantee on the fraction of data received,
in the worst case the data loss rate may signi�cantly exceed
the loss tolerance bound, therefore UDT protocols are not
suitable for distributed ML jobs.
Figure (3c) illustrates the impairments of existing proto-

cols, with TCP and UDP as examples. For TCP, guaranteeing
the delivery of every packet results in large tail completion
time. For UDP, A high rate may result in dropping more
packets than application can tolerate, degrading the appli-
cation level performance; Ideally, by cutting the tail latency
of TCP �ows, ML jobs can complete with same application
performance, while achieving a smaller job completion time
resulting from reduced communication time.

25

Rethinking Transport Layer Design for Distributed Machine Learning APNet ’19, August 17–18, 2019, Beijing, China

TCP
Simplified protocol

N
or

m
al

iz
ed

 JC
T

0

0.5

1.0

1.5

Model
RNN MLP MF CNN

(a) Speedup under PS scheme

TCP
Simplified protocol

N
or

m
al

iz
ed

 JC
T

0

0.5

1.0

1.5

Model
RNN MLP MF CNN

(b) Speedup under RING scheme

TCP
Simplified protocol

FC
T

(m
s)

0

5

10

Setting
PS-avg PS-tail RING-avg RING-tail

(c) FCT of simpli�ed protocol and TCP
(model:MLP)

Figure 4: Speedup of simpli�ed protocol against TCP

3 TOWARDS BOUNDED-LOSS TOLERANT
PROTOCOL

In this section, we discuss the potential of a bounded-loss
tolerant protocol. The bounded-loss tolerant protocol should
guarantee the delivery of a prede�ned fraction of data while
delivering the rest of the data in a best e�ort manner. The
protocol should handle packet losses as follows:

• Packet losses that can be quickly detected (e.g., dupli-
cated ACKs) will be retransmitted as original.

• Bounded packet losses with long detection time (e.g.,
retransmission timer) can be directly discarded.

In this section, we demonstrate the advantages of an simpli-
�ed protocol over existing protocols. We then discuss some
challenges of integrating a bounded-loss tolerant protocols
with ML application, and the intuition why it is tractable.

3.1 Potential improvements
Bounded-loss tolerance feature opens new avenues to conges-
tion control design. Below a certain loss rate, unrecovered
packet drops will not a�ect ML application performance.
Since message size is purely determined by the ML model, in
theory receivers are capable of deciding when the received
data is enough to guarantee application level performance.
We quantify the full potential of a bounded-loss tolerant

protocol using an simpli�ed version. The simpli�ed proto-
col has no packet ordering requirements and only counts
received data amount. The simpli�ed protocol sends all data
at sender side, enables fast retransmission mechanisms, and
we measure the time when a prede�ned fraction p of total
data is received. The tolerance bound p follows table 3.
Experimental settings. We simulated an oversubscribed
spine-leaf topology with 4 spine switches, 8 leaf switches and
16 servers in each rack. Within the same rack 8 servers gen-
erate distributed machine learning tra�c, the other servers
generate background tra�c for other applications. These

Abbrv. Dataset Batch Size Learning Rate
MF [10] 256 0.1
MLP [2] 32 0.5
CNN [15] 32 0.1
RNN [1] 32 0.25
Table 5: Detailed models for evaluation

applications create a load factor of 0.5 on core links. The
over subscription ratio is 4:1. All the links in the topology is
40Gbps link. The switch bu�er is con�gured of size 450KB,
with an ECN marking threshold of 90KB. Default protocol
is DCTCP with initial window of 10 packets. We generate
realistic workloads of data center same as [5] and employ
Equal Cost Multi Path (ECMP) for load balancing.
The detailed hyper parameter settings can be found in

table 5. We use �xed learning rate without weight decay and
momentum factors. The convergence of ML jobs are de�ned
to be the validation loss (i.e. model loss on a subset of data
not used for training) decreases to a model-speci�c threshold.
Each model is trained for 100 epochs.
Estimating job completion time. We run the ML jobs
simulating packet drops as §2.2 until the loss value is smaller
than baseline (ML jobs without data losses) and epochs
passed is no smaller than baseline. The simulated job com-
pletion time is then

epochs ⇥
�
Compute time + 2 ⇥ Network time

�
(1)

We run a simulated ML jobs o�ine with real data, while
emulating the data drops for each parameter uniformly at
random. The random data loss rate is set as tolerance bound
in table 3.
Preliminary results. Figure 4 shows the improvements
against TCP when we run the models in table 2. We com-
pare the performance of the simpli�ed protocol with the

26

APNet ’19, August 17–18, 2019, Beijing, China J. Xia, et al.

performance of TCP. We �nd that leveraging the loss toler-
ant feature of SGD can greatly bene�t distributed ML jobs.
For the models we select, the simpli�ed protocol brings 1.1x-
2.2x speedups. The results of di�erent parameter schemes
are very similar. Due to the di�erence in the time spent in
computation and communication in each model, we see dif-
ferent speedups for di�erent models. Figure 3c shows that the
simpli�ed protocol gets faster speed than TCP and provides
a better application level performance than UDP.
In �gure (4c), we plot compare the �ow completion time

of all the �ows generated by the MLP jobs. As �gure shows,
the main bene�t of the simpli�ed protocol is to cut the tail
latency. The average FCT is similar with that of TCP. There-
fore, the simpli�ed protocol is e�ective in cutting the tail
completion time of ML message transfers.

3.2 Challenges
Implementing a loss tolerant protocol is faced with an impor-
tant challenge. As the protocol only speci�es the highest loss
rate tolerated, the received packet contents may contain mul-
tiple fragments that of the original message. In other words,
the server may have received enough message in terms of
size, but how to interpret the message remains a problem.

Is it possible to understand the partially received message?
The answer is positive. The key observation is that machine
learning messages can be abstracted as a vector describing
the model. The vector contains �oating point numbers of 32
bits or smaller size. To interpret packets’ content indepen-
dently, it is su�cient to restrict that the same �oating point
number is not segmented into two packets. For example, a
packet with 1400 bytes of payload size is capable to contain
350 32-bit �oating point numbers. In such cases, switching a
on-the-boundary value to next packet reduces the packet size
by less than 0.5%, meaning the additional packets generated
by this requirement is negligible.
Idea #1: Range indexing of packets. Following the vec-
tor abstraction of ML models, each packet contains two in-
teger values as ranged keys indicating the index range of
the packet’s content in the vector. The overhead of insert-
ing ranged key index is low: With a normal packet payload
size of ⇠ 1400 bytes, adding two 32-bit numbers as ranged
index increases the overhead of less than 1%, an negligible
overhead to network tra�c.
Idea #2: Integrating with ML frameworks. Upon receiv-
ing enough packets, the bounded loss tolerant should for-
ward the received message to upper layer application, i.e., the
ML frameworks. In addition, the transport protocol marks
the index ranges that the data is not received. This gives the
ML application the information required to take average of
received gradients on server side, or to use an earlier version
of parameter value on worker side.

ValuesL4 Header Key (start, end)

Payload

Figure 5: A ranged indexing scheme for packets.

4 RELATEDWORKS
Optimizing distributedML. There is a large body of work
that optimizes distributedML based on its stochastic features.
Gradient compression [17, 23] and quantization [4, 24] trans-
fer less accurate or compressed gradients. While these works
greatly reduced the network load, their performance is lim-
ited by the transport protocol used. In high-speed data center
network, this can lead to tail latency problems, degrading
job performance.

Some works are proposed to improve distributed ML per-
formance by removing network bottlenecks with less strict
synchronization requirements [19, 25]. These methods do
not have generalized good application level performance on
all ML models, as discussed in [12]. In distributed training,
parameters are often required to be synchronized in bulk
synchronous parallel (BSP) to guarantee performance, i.e.,
every worker must �nish syncing the parameters for current
iteration before the next iteration starts.
Reducing tail latency. Several research works in data cen-
ter network area are proposed to reduce the tail latency.
Pfabric [6] and Cutting Payload [8] optimizes tail latency
with fast detection of lost packets. While these methods
are e�ective, they require changes of switch hardware. TCP
based schemes like DCTCP [5] generally improve latency,
but they have no guarantee on the worst case performance.
Loss tolerance tra�cs. Some protocols for real-time stream-
ing applications tolerates packet loss, e.g., RTCP [13]. How-
ever, related applications doesn’t have a strong tolerance
bound as ML application does. It remains being explored
whether a dynamic loss tolerance similar to quality-of-service
(QoS) concept is applicable to distributed machine learning
jobs.

5 CONCLUSION
In this paper, we call upon this community to develop trans-
port layer solutions for distributed machine learning due to
their stringent network requirements. Distributed machine
learning jobs generate bursty tra�c when synchronizing
parameters, leading to long tail �ow completion time and
increase job completion time. We address the bounded-loss
tolerance feature of machine learning algorithms, and pro-
pose to solve the tail completion time by safely ignoring
some packet losses. Preliminary results show non-trivial
performance gain on various distributed ML applications.

27

Rethinking Transport Layer Design for Distributed Machine Learning APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] 2019. Lots of neat sentence pairs datasets. http://www.manythings.

org/anki/
[2] 2019. Reuters newswire topics classi�cation. https://keras.rstudio.

com/reference/dataset_reuters.html
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving,
Michael Isard, et al. 2016. Tensor�ow: A system for large-scale machine
learning. In OSDI.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan
Vojnovic. 2017. QSGD: Communication-e�cient SGD via gradient
quantization and encoding. In NIPS.

[5] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center tcp (dctcp). In SIGCOMM.

[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal
near-optimal datacenter transport. In SIGCOMM. ACM.

[7] Léon Bottou. 2010. Large-scale machine learning with stochastic
gradient descent. In COMPSTAT’2010. Springer.

[8] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch
the whole lot in an action: Rapid precise packet loss noti�cation in
data center. In NSDI.

[9] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. 2011.
Large-scale matrix factorization with distributed stochastic gradient
descent. In KDD.

[10] Grouplens. 2019. Movielens dataset. https://grouplens.org/datasets/
movielens/

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition.

[12] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia: Geo-
Distributed Machine Learning Approaching LAN Speeds.. In NSDI.

[13] C Huitema. 2003. RFC 3605, Real Time Control Protocol (RTCP) at-
tribute in Session Description Protocol (SDP). Microsoft, Oct (2003).

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[15] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. 2014. The CIFAR-10
dataset. online:http://www.cs.toronto.edu/kriz/cifar.html

[16] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In OSDI.

[17] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017.
Deep gradient compression: Reducing the communication bandwidth
for distributed training. arXiv preprint arXiv:1712.01887 (2017).

[18] Ning Qian. 1999. On the momentum term in gradient descent learning
algorithms. Neural networks (1999).

[19] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011.
Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In NIPS.

[20] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799 (2018).

[21] David Allister Simanjuntak, Heru Purnomo Ipung, Anto Satriyo Nu-
groho, et al. 2010. Text classi�cation techniques used to faciliate cyber
terrorism investigation. In ACT.

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to
sequence learning with neural networks. In NIPS.

[23] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. 2018. Gradient
sparsi�cation for communication-e�cient distributed optimization. In
NIPS.

[24] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. 2017. Terngrad: Ternary gradients to reduce com-
munication in distributed deep learning. In NIPS.

[25] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
2015. Petuum: A new platform for distributed machine learning on
big data. IEEE Transactions on Big Data (2015).

[26] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and
Randy Katz. 2012. DeTail: reducing the �ow completion time tail in
datacenter networks. In SIGCOMM. ACM.

28

