
Congestion Control for Cross-Datacenter Networks
Gaoxiong Zeng

HKUST
Wei Bai
Microsoft

Ge Chen
HKUST

Kai Chen
HKUST

Dongsu Han
KAIST

Yibo Zhu
ByteDance

Lei Cui
Huawei

Abstract—Geographically distributed applications hosted on
cloud are becoming prevalent. They run on cross-datacenter
network that consists of multiple data center networks (DCNs)
connected by a wide area network (WAN). Such a cross-DC net-
work imposes significant challenges in transport design because
the DCN and WAN segments have vastly distinct characteristics
(e.g., buffer depths, RTTs).

In this paper, we find that existing DCN or WAN transports
reacting to ECN or delay alone do not (and cannot be extended
to) work well for such an environment. The key reason is that
neither of the signals, by itself, can simultaneously capture the
location and degree of congestion. This is due to the discrepancies
between DCN and WAN. Motivated by this, we present the design
and implementation of GEMINI that strategically integrates both
ECN and delay signals for cross-DC congestion control. To
achieve low latency, GEMINI bounds the inter-DC latency with
delay signal and prevents the intra-DC packet loss with ECN.
To maintain high throughput, GEMINI modulates the window
dynamics and maintains low buffer occupancy utilizing both
congestion signals. GEMINI is implemented in Linux kernel and
evaluated by extensive testbed experiments. Results show that
GEMINI achieves up to 53%, 31% and 76% reduction of small
flow average completion times compared to TCP Cubic, DCTCP
and BBR; and up to 58% reduction of large flow average
completion times compared to TCP Vegas.

I. INTRODUCTION

Applications running in geographically distributed setting
are becoming prevalent [1]–[8]. Large-scale online services
often share or replicate their data into multiple DCs in
different geographic regions. For example, a retailer website
runs a database of in-stock items replicated in each regional
data center for fast serving local customers. These regional
databases synchronize with each other periodically for the
latest data. Other examples include image sharing on online
social networks, video storage and streaming, geo-distributed
data analytics, etc.

These applications run on cross-datacenter (DC) network
(Figure 1) that consists of multiple data center networks
(DCNs) connected by a wide area network (WAN). The wide
area and intra-DC networks have vastly distinct characteristics
(§II-A). For WAN, achieving high network utilization is a
focus and switches have deep buffers. In contrast, latency is
critical in DCN and switches have shallow buffers. While there
are numerous transport protocols designed for either DCN or
WAN individually, to the best of our knowledge, very little
work has considered a cross-DC environment consisting of
both parts at the same time.

To handle congestion control in either DCN or WAN, exist-
ing solutions have leveraged either ECN (e.g., DCTCP [9] and

InterDC
WAN

Inside DC

ToR Switch

Border Router

Data Center WAN Link

DC Link

Rack Servers

Fig. 1. Cross-Datacenter Network.

DCQCN [10]) or delay (e.g., Vegas [11] and TIMELY [12]) as
the congestion signal, and successfully delivered compelling
performance in terms of high-throughput and low-latency [9]–
[14]. Unfortunately, due to the discrepancies between DCN
and WAN, none of existing solutions designed for DCN or
WAN works well for a cross-DC network (§II-B). Even worse,
it is unlikely, if not impossible, that they can be easily extended
to work well.

The fundamental reason is that these solutions only exploit
one of the signals (either ECN or delay), which suffices
for a relatively homogeneous environment. However, by their
nature, ECN or delay alone cannot handle heterogeneity. First,
ECN is difficult to configure to meet requirements of mixed
flows. The inter-DC and intra-DC flows coexist in cross-DC
network, with RTTs varying by up to 1000×. Small RTT
flows require lower ECN thresholds for low latency; while
large RTT flows require larger ones for high throughput. In
fact, tuning ECN threshold may not work, because DC switch
shallow buffers can be easily overwhelmed by bursty large-
BDP cross-DC traffic. For example, DCN can account for
4−20× more packet losses than WAN in experiments under
realistic workload.

Meanwhile, delay signal, by itself, is limiting in simulta-
neously detecting congestion in WAN and DCN. Cross-DC
flows may congest either in WAN or DCN, while delay signal
cannot distinguish them given its end-to-end nature. This leads
to a dilemma of either under-utilizing WAN (deep-buffered)
links with small delay thresholds or increasing DCN (shallow-
buffered) packet losses with higher thresholds. For example,
Vegas, when scaling its default parameters by 20, achieves
1.5× higher throughput at the cost of > 30× more intra-DC
packet losses. Furthermore, low delay thresholds impose harsh
requirements on accurate delay measurement [12], for which
extra hardware support is needed.

The above problems call for a new synergy that considers
not just one of, but both ECN and delay signals in congestion978-1-7281-2700-2/19/$31.00 2019 © IEEE

TABLE I
BUFFER SIZE FOR COMMODITY DCN SWITCHES AND WAN ROUTERS.

DCN WAN
Switch / Router Arista 7010T Arista 7050T Arista 7050QX Arista 7504R Arista 7516R

Capacity (ports×BW) 48×1Gbps 48×10Gbps 32×40Gbps 576×10 Gbps/144×100Gbps 2304×10Gbps/576×100Gbps
Total buffer size 4 MB 9 MB 12 MB 96 GB 384 GB

Buffer per port per Gbps 85 KB 19.2 KB 9.6 KB 16.7 / 6.7 MB 16.7 / 6.7 MB

control for cross-DC network communications. Specifically,
the new solution must be able to handle the following key
challenges (§III-A) that have not been exposed to any of
prior works: (1) How to achieve persistent low latency in the
heterogeneous environment, even if DC switches (more likely
to drop packet) and WAN routers (more likely to accumulate
large buffering) have vastly different buffer depths. (2) How
to maintain high throughput for inter-DC traffic with shallow-
buffered DC switches, even if the propagation delay is in tens
of milliseconds range, instead of < 250µs assumed by DCN
transport protocols such as DCTCP.

Toward this end, this paper presents GEMINI to organically
integrate ECN and delay through the following three main
ideas (§III-B) to combat the above two challenges:
• Integrating ECN and delay signals for congestion detec-
tion. Delay signal is leveraged to bound the total in-flight
traffic over the entire network path including the WAN
segment, while ECN signal is used to control the per-hop
queue inside DCN. With bounded end-to-end latency and
limited packet losses, persistent low latency is guaranteed.
• Modulating the ECN-triggered window reduction aggres-

siveness by the RTT of a flow. Unlike conventional TCPs
that drain queues more for larger RTT flows, we make large
RTT flows decrease rates more gently, resulting in smoother
“sawtooth” window dynamics. This, in turn, prevents band-
width under-utilization of inter-DC traffic, while sustaining
low ECN threshold for intra-DC traffic.
• Adapting to RTT variation in window increase. We scale

the additive window increase step in proportion to RTT,
which better balances the convergence speed and system
stability under mixed inter-DC and intra-DC traffics.
Finally, we evaluate GEMINI by extensive testbed experi-

ments (§IV). We implement GEMINI with Linux kernel 4.9.25
and commodity switches. We show that GEMINI achieves up
to 49% higher throughput compared to DCTCP under DCN
congestion, and up to 87% lower RTT compared to Cubic
under WAN congestion; converges to bandwidth fair-sharing
point in a quick and stable manner regardless of different
RTTs; and delivers low flow completion times (FCT)—up
to 53%, 31% and 76% reduction of small flow average
FCT compared to Cubic, DCTCP and BBR; and up to 58%
reduction of large flow average FCT compared to Vegas.

II. BACKGROUND AND MOTIVATION

We show heterogeneity of cross-DC networks in §II-A, and
demonstrate transport performance impairments in §II-B.

A. Heterogeneity in Cross-DCNs
The real-world cross-datacenter networks present heteroge-

neous characteristics in the following aspects:

Nort
h E

uro
pe

W
est

 Euro
pe

East
 U

S 1

East
 U

S 2

Cen
tra

l U
S 1

Cen
tra

l U
S 2

Cen
tra

l U
S 3

Cen
tra

l U
S 4

W
est

 U
S 1

W
est

 U
S 2

East
 A

sia

Sou
the

ast
 A

sia

North Europe
West Europe

East US 1
East US 2

Central US 1
Central US 2
Central US 3
Central US 4

West US 1
West US 2

East Asia
Southeast Asia

100ms

101ms

102ms

Fig. 2. RTT Heat Map in Cross-DC Network.

Heterogeneous networking devices. A cross-DC network
consists of heterogeneous networking devices (e.g., with dis-
tinct buffer depths) from intra-DC network (DCN) and inter-
DC WAN. Table I gives a survey of switches or routers [15]
commonly used in DCN and WAN. DCN switches have
shallow buffers, up to tens of kilobytes per port per Gbps.
In contrast, WAN routers adopt deep buffers, up to tens of
megabytes per port per Gbps.

Mixed intra-DC and inter-DC traffics. Intra-DC and inter-
DC traffics coexist in the cross-DC network [16], [17]. They
exhibit very different RTTs. To demonstrate this, we conduct
RTT measurements on one of the major cloud platforms
with 12 representative DCs across the globe. Figure 2 shows
the result. The intra-DC RTTs are as small as hundreds
of microseconds. In contrast, the inter-DC RTTs vary from
several milliseconds to hundreds of milliseconds.

Different administrative control. Cloud operators have full
control over DCN, but do not always control the WAN devices.
This is because many cloud operators lease the network
resource (e.g., guaranteed bandwidth) from Internet service
providers (ISPs) and WAN gears are maintained by the ISPs.
As a result, some switch features, e.g., ECN, may not be
well supported [18], [19] (either disabled or configured with
undesirable marking thresholds) in WAN.

The heterogeneity imposes great challenges in transport
design. Ideally, transport protocols should take congestion
location (buffer depth), traffic type (RTT) and supported
mechanism (e.g., ECN) into consideration. We show how prior
designs are impacted without considering the heterogeneity in
the following subsection (§II-B).

B. Single Signal’s Limitations with Heterogeneity

Most of the existing transports [9]–[14] use either ECN or
delay as the congestion signal. While they may work well in
either DCN or WAN, we find that ECN or delay alone cannot

2

...

DC A Border Router DC B Border Router

DC Switch 1 DC Switch 2

DC Switch 3

DC Switch 4

Rack 1 Servers Rack 2 Servers Rack 3 Servers Rack 4 Servers

InterDC WAN Link

Fig. 3. Cross-Datacenter Network Testbed.

handle heterogeneity. We conduct extensive experiments to
study the performance impairments of leveraging ECN or
delay signal alone in cross-DC networks.
Testbed: We build a testbed (Figure 3) that emulates 2 DCs
connected by an inter-DC WAN link. Each DC has 1 border
router, 2 DC switches and 24 servers. All links have 1 Gbps
capacity. The intra-DC and inter-DC base RTTs (without
queueing) are ∼ 200µs and ∼ 10 ms1, respectively. The max-
imum per-port buffer size of DC switch and border router are
∼450 and 10,000 1.5 KB-MTU-sized packets, respectively.
Schemes Experimented: We experiment Cubic [21], Ve-
gas [11], BBR [13] and DCTCP [9]. Cubic is experimented
with and without ECN. ECN threshold at DC switches is set to
300 packets to guarantee high throughput for inter-DC traffic.
ECN is not enabled in the WAN segment. Vegas uses two
parameters α and β to control the lower and upper bound of
excessive packets in flight. We experiment the default setting
(α = 2, β = 4) and scaled by 10 settings (α = 20, β = 40).

We run realistic workload based on a production trace of
web search [9]. All flows cross the inter-DC WAN link. The
average utilization of the inter-DC and intra-DC links are
∼90% and ∼11.25–45%. The flow completion time (FCT)
results are shown in Figure 4. We make the following obser-
vations and claims, and elaborate them later in the section:

• Transports based on loss or ECN signal only (e.g., Cubic,
Cubic + ECN and DCTCP) perform poorly in small flow
FCTs (Figure 4(a) and 4(b)). This is because they experi-
ence high packet losses in shallow-buffered DCN (Table II)
and large queueing delay without ECN in WAN. We fur-
ther find that configuring ECN threshold is fundamentally
difficult under mixed traffics.

• Transports based on delay signal, when using small thresh-
olds (e.g., Vegas), achieve good performance for small
flows (Figure 4(a) and 4(b)) at the cost of slowing down
large flows (Figure 4(c)). In contrast, when using large
thresholds (e.g., Vegas with the scaled by 10 parameters),
they greatly degrade the performance of small flows. We
further demonstrate the dilemma on setting delay thresholds
under distinct buffer depths.

• BBR suffers from high packet loss rates (> 0.1%), leading
to poor small flow FCTs (Figure 4(a) and 4(b)). BBR
requires precise estimates of available bandwidth and RTT,
which are difficult to achieve under dynamic workload.

1Our DC border routers are emulated by servers with multiple NICs, so
that we can use NETEM [20] to emulate inter-DC propagation delay.

Problems of ECN-signal-only solutions. ECN-based trans-
ports use the ECN signal [22], [23] that reflects the per-hop
network congestion. For it to deliver high throughput, ECN
marking threshold must be set proportional to the bandwidth-
delay product (BDP) [9], [24], [25]. However, in a cross-DC
setting, it is difficult to configure due to the large difference
in RTT and divergent requirements imposed by intra-DC and
inter-DC flows. Intra-DC flows impose small buffer pressure
but have stringent latency requirement (e.g., hundreds of
microseconds). In contrast, inter-DC flows have looser latency
requirement given the large base latency of WAN, instead
require large buffer space for high WAN utilization.

To demonstrate the problem, we generate incast flows from
hosts in the same rack to a remote server using DCTCP. We
perform two experiments in this setting. In the first experiment,
we choose a destination server in the same DC so there are
intra-DC flows only. In the second experiment, we choose a
destination server in a remote DC so there are inter-DC flows
only. In both cases, the bottleneck link is at the source DC
switch due to the incast traffic pattern. We vary the ECN
marking threshold of the bottleneck switch between 20, 40,
80, 160, and 320 packets per port.

Figure 5(a) and 5(b) show the throughput and latency
results of intra-DC and inter-DC flows, respectively. From Fig-
ure 5(a), we observe a small threshold is desirable to achieve
low latency for intra-DC flows. In contrast, from Figure 5(b),
we observe inter-DC flows require a high threshold for high
throughput. Clearly, there is a conflict: one cannot achieve high
throughput and low latency simultaneously for both inter-DC
and intra-DC flows in the cross-DC network.

In fact, achieving high utilization over cross-DC is non-
trivial because intra-DC switches have shallow buffers — the
shallow buffer is easily overwhelmed by bursty large-BDP
cross-DC flows (we call it buffer mismatch). We confirm that
by measuring the packet loss rate (PLR) in previous dynamic
workload experiments. Table II shows the results. We find
that packet losses happen within DCN mostly (> 80%), even
though inter-DC WAN is more heavily loaded than intra-DC
links. The high losses then lead to low throughput for loss-
sensitive protocols. Large-BDP cross-DC traffic is a key factor
of the problem. We repeat the same experiments with the inter-
DC link delay set to 0. All traffics are now with low BDPs. We
observe small PLRs (< 10×10−5) within DCN for all ECN-
based schemes this time. Further, we find that naively pacing
packets like in BBR cannot completely resolve the problem.
For example, Cubic with FQ/pacing [26] has similar high PLR
(66×10−5) in DCN compared to raw Cubic.

TABLE II
DCN / WAN PACKET LOSS RATE (10−5).

Cubic Cubic + ECN DCTCP
78 / 10 24 / 6 19 / < 1

In addition, ECN-based transports require ECN marking
support from all network switches. However, ECN marking
may not be well supported in WAN. As a result, ECN-based
transports may fall back on using packet loss signal, leading
to high packet losses and long queueing delay.

3

0

100

200

300
FC

T
 (m

s)
Cubic
Cubic+ECN
DCTCP

Vegas
Vegas-10
BBR

(a) Small Flow - Average

0

100

200

300

400

FC
T

 (m
s)

(b) Small Flow - 99th Tail

0

2000

4000

6000

8000

FC
T

 (m
s)

(c) Large Flow - Average

0

200

400

600

FC
T

 (m
s)

(d) All Flow - Average

Fig. 4. Flow completion time (FCT) results. Small flow: Size < 100 KB. Large flow: Size > 10 MB.

100 200 300
ECN Threshold - K (pkts)

0

250

500

750

1000

T
hr

ou
gh

pu
t (

m
bp

s)

0

10

20

30
In

fla
te

d
R

T
T

 R
at

io

Better

(a) Intra-DC Flows: RTT=200µs

100 200 300
ECN Threshold - K (pkts)

0

250

500

750

1000

T
hr

ou
gh

pu
t (

m
bp

s)

0

10

20

30

In
fla

te
d

R
T

T
 R

at
io

Better

(b) Inter-DC Flows: RTT=10 ms

Fig. 5. Conflicting ECN requirements in DCTCP. The right y-axis shows
latency by the inflated RTT ratio — the queueing-inflated RTT normalized
by the base RTT (w/o queueing).

1 5 10 15 20
Delay Threshold Scaled by N

0

2

4

6

8

10

L
ar

ge
 F

lo
w

 F
C

T
 (s

ec
)

0

10

20

30

PL
R

 (1
0

5) i
n

D
C

N

Fig. 6. Dilemma in setting delay threshold. The left y-axis shows throughput
by the flow completion time (FCT) of large flows. The right y-axis shows
packet loss rate (PLR) inside DCN.

Problems of delay-signal-only solutions. Delay-based trans-
ports use the delay signal [11], [12] that reflects the cumulative
end-to-end network delay. Typically, they have a threshold to
control the total amount of in-flight traffic. However, given
different buffer depths in WAN and DCN, a dilemma arises
when setting the delay threshold — either inter-DC throughput
or intra-DC latency is sacrificed.

Cross-DC flows may face congestion either in WAN or
DCN. Delay signal handles both indistinguishablly given its
end-to-end nature. On the one hand, if we assume congestion
occurs in WAN, the delay thresholds should be large enough
(usually in proportion to the BDP) to fully utilize the WAN
bandwidth. However, if the bottleneck resides in the DCN
instead, the large thresholds (e.g., 10 ms× 1 Gbps = 1.25 MB)
can easily exceed the DC switch shallow buffers (e.g., 83 KB
per Gbps) and cause frequent packet losses. On the other
hand, if we assume congestion happens in DCN, the delay
thresholds should be low enough (at least bounded by the DC
switch buffer sizes) to avoid severe intra-DC packet losses.
However, if the bottleneck resides in WAN instead, the low
thresholds can greatly impair the bandwidth utilization. In
sum, the dilemma of setting delay thresholds arises.

To demonstrate the problem, we run the same benchmark
workloads used earlier in the section. We experiment Vegas
with the default setting (α = 2, β = 4) and scaled by N

settings (α = 2 × N, β = 4 × N), where N is set to 1,
5, 10, 15, 20. Results are shown in Figure 6. On the one
hand, small delay thresholds degrade the inter-DC throughput,
leading to high average FCT for large flows. On the other hand,
large delay thresholds increase packet losses significantly in
shallow-buffered DCN. Therefore, setting the delay thresholds
are faced with a dilemma of either hurting inter-DC throughput
or degrading intra-DC packet loss rate.

In addition, low delay thresholds impose harsh requirement
over accurate delay measurement, for which extra device
supports (e.g., NIC prompt ACK in [12]) are needed.

III. GEMINI

We introduce our design rationale in §III-A, describe the
detailed GEMINI congestion control algorithm in §III-B, and
provide theoretical analysis in §III-C and §III-D.

A. Design Rationale

How to achieve persistent low latency in the heterogeneous
network environment? Persistent low latency implies low
end-to-end queueing delay and near zero packet loss. Obvi-
ously, ECN, as a per-hop signal, is not a good choice for
bounding the end-to-end latency; not to mention, ECN has
limited availability in WAN. If we use delay signal alone,
small delay threshold is necessary for low loss given the DC
switch shallow buffer. However, with a small amount of in-
flight traffic, we may not be able to fill the network pipe of
the WAN segment (demonstrated in §II-B).

Instead of using a single type of signal alone, we integrate
ECN and delay signals to address this challenge. In particular,
delay signal, given its end-to-end nature, is effectively used to
bound the total in-flight traffic; and ECN signal, as a per-hop
signal, is leveraged to control the per-hop queues. Aggressive
ECN marking is performed at the DC switch to prevent
shallow buffer overflow. Thus, the constraint of using small
delay thresholds is removed, leaving more space to improve
WAN utilization. In this way, the aforementioned dilemma of
delay-based transports is naturally resolved.

How to maintain high throughput for inter-DC traffic
with shallow-buffered DC switches? A majority of trans-
ports (e.g., DCTCP) follow additive-increase multiplicative-
decrease (AIMD) congestion control rule. The queue length
they drain in each window reduction is proportionate to BDP
(C × RTT) [9], [24], [25]. Essentially, the queue length
drained each time should be smaller than the switch buffer
size to avoid buffer empty and maintain full throughput. Thus,
given large RTT range in cross-DC network, high buffers

4

G

Congestion
Level in DCN

Congestion
Level in WAN

Received an ACK

Congestion Detected?

False

Congestion Avoidance

True

Window Reduction

Fig. 7. GEMINI Congestion Control Process.

are required. In deep-buffered WAN, setting a moderately
high delay threshold works well to balance throughput and
latency. However, in shallow-buffered DCN, aggressive ECN
marking is required for low queueing and low loss rate. With
limited buffer space, sustaining high throughput gets extremely
difficult (demonstrated in §II-B).

To address this buffer mismatch challenge, we modulate
the aggressiveness of ECN-triggered window reduction by
RTT. Maintaining high throughput, in effect, requires large
RTT flows to drain queues as small as small RTT flows do
during window reduction. Intuitively, we make larger RTT
flows reduce rates more gently, thus resulting in smoother
“sawtooth” window and queue length dynamics. In this way,
bandwidth under-utilization can be effectively mitigated, while
still using a small ECN marking threshold. The use of small
ECN threshold leave enough headroom in the shallow buffer
switches because it keeps the average buffer occupancy low,
reducing the delay and packet drop.

B. GEMINI Algorithm

GEMINI is a window-based congestion control algo-
rithm that uses additive-increase and multiplicative-decrease
(AIMD). Following the design rationale above, GEMINI lever-
ages both ECN and delay signals for congestion detection.
It further adjusts the extent of window reduction as well as
growth function based on RTTs of the flows to incorporate het-
erogeneity. The GEMINI algorithm is summarized by flowchart
in Figure 7 and pseudocode in Algorithm 1. Parameters and
variables are summarized in Table III.

Integrating ECN and delay for congestion detection. The
congestion detection mechanism leverages both ECN and
delay signals. Delay signal is used to bound the total in-flight
traffic in the network pipe. ECN signal is used to control
the per-hop queues inside DCN. By integrating ECN and
delay signal, low latency can be achieved. Specifically, DCN
congestion is detected by ECN, so as to meet the stringent per-
hop queueing control requirement imposed by shallow buffers.
WAN congestion is detected by delay, because the end-to-end
delay is dominated mostly in WAN than in DCN.

DCN congestion is indicated by the ECN signal — the
ECN-Echo flag set in the ACKs received by the senders. The
ECN signal is generated exactly the same as DCTCP. Data
packets are marked with Congestion Experienced (CE) code-
point when instantaneous queueing exceeds marking threshold
at the DC switches. Receivers then echo back the ECN marks
to senders through ACKs with the ECN-Echo flags. Given

Algorithm 1: GEMINI Congestion Control Algorithm.
Input : New Incoming ACK
Output: New Congestion Window Size
/* Update transport states: (e.g., α). */

1 update transport state(α, rtt base, rtt min) ;
/* When congested, set 1; else 0. */

2 congested dcn ← ecn indicated congestion() ;
3 congested wan ← rtt indicated congestion() ;
4 if congested dcn || congested wan then
5 if time since last cwnd reduction > 1 RTT then
6 F ← 4 × k / (c × rtt base + k) ;
7 f dcn ← α × F × congested dcn ;
8 f wan ← β × congested wan ;
9 cwnd ← cwnd × (1 - max(f dcn, f wan)) ;

10 else
11 h ← H × c × rtt base ;
12 cwnd ← cwnd + h / cwnd ;

TABLE III
PARAMETERS AND VARIABLES USED IN GEMINI.

Parameter Description
K ECN marking threshold
T Delay threshold
β Parameter for window reduction in WAN
H Parameter for congestion window increase

Variable Description
CWND Congestion window
fDCN Extent of window reduction in DCN
fWAN Extent of window reduction in WAN
RTTmin Minimum RTT observed in previous RTT
RTTbase Minimum RTT observed during a long time
RTT Simplified notation of RTTbase

C Bandwidth capacity
α Average fraction of ECN marked packets
F Scale factor for DCN congestion control
h Adaptive congestion window increase step

shallow-buffered DCN, the ECN signal is leveraged with a
small marking threshold for low packet losses.

WAN congestion is indicated by the delay signal — ACKs
returned after data sending with persistent larger delays:
RTTmin > RTTbase + T , where RTTmin is the minimum
RTT observed in previous RTT (window); RTTbase, or simpli-
fied as RTT , is the base RTT (minimum RTT observed during
a long time); T is the delay threshold. Inspired by [27], we use
RTTmin instead of average or maximum RTTs, which can bet-
ter detect persistent queueing and tolerate transient queueing
possibly caused by bursty traffic. Given deep-buffered WAN,
the delay signal is used with a moderately high threshold for
high throughput and bounded end-to-end latency.

When either of the two signals indicate congestion, we react
to the signal by reducing the congestion window correspond-
ingly. When both ECN and delay signals indicate congestion,
we react to the one of heavier congestion:

CWND = CWND × (1−max(fDCN , fWAN))

where fDCN determines the extent of window reduction for
congestion in DCN; and fWAN determines that of WAN. We
show how to compute them later in the section.

5

Modulating the ECN-triggered window reduction aggres-
siveness by RTT. The window reduction algorithm aims to
maintain full bandwidth utilization while reducing the network
queueing as much as possible. This essentially requires switch
buffer never underflow at the bottleneck link. Given distinct
buffer depths, GEMINI reduces congestion window differently
for congestion in DCN and WAN.

In DCN, given shallow buffer, strictly low ECN threshold is
used for low packet losses. We adopt the DCTCP algorithm,
which works well under the low ECN threshold for the
intra-DC flows. However, for large RTT inter-DC flows, the
throughput drops greatly. This is because the buffer drained
by a flow during window reduction increases with its RTT
(e.g., the amplitude of queue size oscillations for DCTCP is
O(
√
C ×RTT) [9], [25]). Larger RTT flows drain queues

more and easily empty the switch buffers, leading to low
link utilization. Inspired by this, GEMINI extends DCTCP
by modulating the window reduction aggressiveness based on
RTT. This guides the design of fDCN — the extent of window
reduction when congestion is detected in DCN. When ECN
signal indicates congestion, we compute fDCN as follows:

fDCN = α× F

where α is the exponential weighted moving average (EWMA)
fraction of ECN marked packets, F is the factor that modulates
the congestion reduction aggressiveness. We derive the scale
factor F = 4K

C×RTT+K (see Theorem 1 with detailed proof
in §III-C), where C is the bandwidth capacity, RTT is the
minimum RTT observed during a long time, K is the ECN
marking threshold. Thus, for intra-DC flows, following the
guideline in DCTCP by setting K = (C ×RTT)/7, we have
F = 1

2 , exactly matching the DCTCP algorithm. For inter-DC
flows with larger RTTs, F gets smaller, leading to smaller
window reduction and smoother queue length oscillation.

In WAN, given much deeper buffer, high throughput can
be more easily maintained than in DCN. In fact, window
reduction based on a fixed constant, like standard TCPs [21],
[28] do, is enough for high throughput. There are potentially
a wide range of threshold settings to effectively work with
(see §III-D). This guides the design of fWAN — the extent
of window reduction when congestion is detected in WAN.
When RTT signal indicates congestion, we compute fWAN

as follows:
fWAN = β

where β is a window decrease parameter for WAN.

Window increase that adapts to RTT variation. The
congestion avoidance algorithm adapts to RTTs (or BDP when
the bandwidth capacity is fixed) to help balance convergence
speed and stability. For conventional AIMD, large BDP flows
need more RTTs to climb to the peak rate, leading to slow
convergence; while small BDP flows may frequently overshoot
the bottleneck bandwidth, leading to unstable performance.
Adjusting the window increasing step in proportion to BDP
compensates the RTT variation and makes the system more
robust under heterogeneity. Further, it also mitigates RTT

unfairness [29], [30], which in turn helps to improve tail
performance. This leads to the adaptive congestion window
increase factor h. When there is no congestion indication, for
each ACK,

CWND = CWND +
h

CWND

h is a congestion avoidance factor in proportion to BDP:
h = H × C × RTT , where H is a constant parameter, C is
the bandwidth capacity, RTT is the minimum RTT observed
during a long time.

C. Derivation of the Scale Factor F

We analyze the steady state behavior and prove that GEMINI
achieves full throughput with scale factor F = 4K

C×RTT+K .

Theorem 1. Given a positive ECN marking threshold K,
we can maintain 100% throughput under DCN congestion if
congestion window is reduced as follows,

CWND = CWND × (1− α× F)

where α is the EWMA of ECN fraction and F ≤ 4K
C×RTT+K .

Proof: Same as prior work [9], [14], we consider N long-
lived flows with identical round-trip times RTT , sharing a
single bottleneck link of capacity C. Assuming N window
sizes are synchronized for the ease of analysis, the queue size
is:

Q(t) = N ×W (t)− C ×RTT (1)

where W (t) is the dynamic window size. Therefore, the queue
size process is also a sawtooth. To achieve full link utilization,
we need to guarantee: Qmin ≥ 0 (see Figure 8).

The queue size exceeds the marking threshold K for exactly
one RTT in each cycle before the sources receive ECN
feedback and reduce their window sizes accordingly. We can
compute the fraction of marked packets, α, by simply dividing
the number of packets sent during the last RTT of the cycle
by the total number of packets sent during a full cycle of the
sawtooth.

Let’s consider one of the senders. Let S(W1,W2) denote the
number of packets sent by the sender, while its window size
increases from W1 to W2 > W1. Since this takes (W2−W1)/h
round trip times, during which the average window size is
(W1 +W2)/2,

S(W1,W2) = (W 2
2 −W 2

1)/2h (2)

Let W ∗ = (C×RTT +K)/N . This is the critical window
size at which the queue size reaches K, and the switch starts
marking packets with the Congestion Experienced (CE) code-
point. During the RTT before the sender reacts, the window
size peaks at W ∗ + h. Hence,

α = S(W ∗,W ∗ + h)/S((W ∗ + h)(1− αF),W ∗ + h) (3)

Plugging (2) into (3) and rearranging, we get:

α2F (2− αF) = (2W ∗ + h)h/(W ∗ + h)2 ≈ 2h/W ∗ (4)

where the approximation is valid when W ∗ >> h.

6

D

W*+h
W*

Wmin

CWND

Packets sent in this period
(1 RTT) are marked.

Time

1 Cycle (Multiple RTTs)

A

Qmax
K

Qmin

Queue

Time

1 Cycle (Multiple RTTs)

Fig. 8. AIMD Sawtooth Illustration.

Equation (4) can be used to compute α as a function of
the network parameters C, RTT , N and K. Assuming αF is
small, this can be simplified as:

α ≈
√
h/FW ∗ (5)

We can now compute A in Figure 8 as follows. Note that
the amplitude of oscillation in window size of a single flow,
D, is given by:

D = (W ∗ + h)− (W ∗ + h)(1− αF) = (W ∗ + h)αF (6)

Since there are N flows in total,

A = N ×D = N(W ∗ + h)αF ≈ N
√
hFW ∗

=
√
NhF (C ×RTT +K)

(7)

With (1), we have:

Qmax = N × (W ∗ + h)− C ×RTT = K +Nh (8)

With (7) and (8), the minimum queue length is:

Qmin = Qmax −A = K +Nh−
√
NhF (C ×RTT +K)

(9)

Finally, to find the relationship between the scale factor F
and the ECN marking threshold K, we minimize (9) over N ,
and choose K and F so that this minimum is no smaller than
zero (i.e., the queue never underflows). This results in:

F ≤ 4K

C ×RTT +K
(10)

D. Guidelines for Setting Parameters

Default GEMINI parameter settings are shown in Table IV.
We adopt the default parameter settings throughout all our
experiments unless otherwise specified. We provide the fol-
lowing rules of thumbs for setting the parameters, but leave
finding the optimal threshold settings to the future work.

TABLE IV
DEFAULT GEMINI PARAMETER SETTINGS.

Parameter Default Value
K 50 pkts /Gbps
T 5 ms
β 0.2
H 1.2× 10−7

ECN Marking Threshold (K). The scaling factor F ensures
full link utilization given an ECN threshold (K). As a lower K
indicates a smaller queue, setting K as low as possible may
seem desirable. However, there is actually a trade-off here.
When K is small, the scaling factor F is also small, making
the flows reduce their congestion window slowly, leading to

slower convergence. Therefore, we recommend a moderately
small threshold of 50 packets per Gbps. In addition, to mitigate
the effect of packet bursts, we use a per-flow rate limiter at
the sender to evenly pace every packet.

Queueing Delay Threshold (T). T should be sufficiently
large to achieve high throughput in the cross-DC pipe. It
should also leave enough room to filter out the interference
from the DCN queueing delay. In practice (§II-A), RTTs
(include queueing) in production DCNs are at most 1ms. We
recommend to set T = 5ms.

Window Decrease Parameter (β). GEMINI reduces the
window size by β multiplicatively when WAN congestion is
detected. To avoid bandwidth under-utilization, we need to
have queueing headroom T > β

1−βRTT , or β < T
T+RTT in

theory (proof similar to [24]). We recommend to set β = 0.2.
We show that a wide range of T and β settings can well serve
the cross-DC networks in §IV.

Window Increase Parameter (H). GEMINI additively in-
creases the window by h per RTT when there is no conges-
tion. In our implementation, we actually scale h with BDP
(C ×RTT) instead of RTT only, that is, h = H ×C ×RTT .
This is reasonable as large BDP means potentially large
window size. Scaling h with BDP achieves better balance
between convergence speed and stability. We recommend to set
H = 1.2 × 10−7 with bounded minimum/maximum increase
speed of 0.1 / 5 respectively as a protection.

IV. EVALUATION

In this section, we present the detailed GEMINI Linux kernel
implementation and evaluation setup in §IV-A, and conduct
extensive experiments to answer the following questions:
§IV-B Does GEMINI achieve high throughput and low

latency? We show that GEMINI achieves higher throughput
(1−1.5×) and equally low delay compared to DCTCP under
DCN congestion; lower delay (> 7×) and equally high
throughput compared to Cubic under WAN congestion.

§IV-C Does GEMINI converge quickly, fairly and stably? In
static traffic experiments, we show that GEMINI converges
to the bandwidth fair-sharing point quickly and stably under
both DCN congestion and WAN congestion, regardless of
distinct RTTs differed by up to 64 times.

§IV-D How does GEMINI perform under realistic work-
load? In realistic traffic experiments, we show that under
both cases (intra-DC heavy or inter-DC heavy traffic pat-
tern), GEMINI persistently achieves the best or the second
best flow completion times for both short and large flows.

A. Implementation and Experiment Setup

GEMINI Implementation: GEMINI is developed based on
Linux kernel 4.9.25. Linux TCP stack has a universal conges-
tion control interface defined in struct tcp congestion ops,
which supports various pluggable congestion control modules.
The congestion window reduction algorithm is implemented in
in ack event() and ssthresh(). The congestion avoidance
algorithm is implemented in cong avoid().

7

100 200 300
ECN Threshold - K (pkts)

400

600

800

T
hr

ou
gh

pu
t (

m
bp

s)
K=50 packets by default
 in Gemini.

K=20 packets for 1Gbps DCN.
Recommended by DCTCP.

DCTCP
Gemini

Fig. 9. Aggregate throughput of inter-DC flows that bottlenecked at a DCN
link. GEMINI is less buffer-hungry (requires 0-76% smaller K) than DCTCP
when achieving similar throughput.

Testbed: Experiments are conducted in 2 testbeds with 1Gbps
and 10Gbps capacity respectively. The 1Gbps testbed has a
larger scale than the 10Gbps one. Both testbeds share the
same topology as shown in Figure 3. There are 2 data centers
connected by an inter-DC WAN link. Each data center has one
border router, two DC switches and multiple servers. Border
routers are emulated by servers with multiple NICs, so that we
can use NETEM [20] to emulate WAN propagation delay. Intra-
DC (under single ToR) and inter-DC base RTTs are ∼ 200µs
and ∼ 10 ms, respectively. Dynamic buffer allocation [31] at
the DC switches is enabled like most operators do in real
deployments to absorb bursts.
• Large-scale 1Gbps Testbed: There are 50 Dell PowerEdge

R320 servers and 4 Pica8 P-3297 switches. Pica8 P-3297
switches have 4MB buffer shared by 48 ports. The WAN
buffer is set to 10,000 MTU-sized packets per port. All
network interfaces are set to 1Gbps full duplex mode.

• Small-scale 10Gbps Testbed: There are 10 HUAWEI
RH1288 V2 servers and 1 Mellanox SN2100 switch (di-
vided into multiple VLANs). Mellanox SN2100 switches
have 16MB buffer shared by 16 ports. The WAN buffer
is set to 80,000 MTU-sized packets per port. All network
interfaces are set to 10Gbps full duplex mode.

Remark: We show results of the large-scale testbed by default.

Schemes Compared: We experiment Cubic [21], Vegas [11],
BBR [13], DCTCP [9] and GEMINI. All these protocols have
implementations in Linux kernel and are readily deployable.
Cubic is the default loss-based congestion control used in
Linux system. It is experimented with and without ECN.
DCTCP is an ECN-based congestion control designed to
achieve high throughput, low latency and high burst tolerance
in DCN. The ECN marking threshold is set to 300 packets to
guarantee high throughput for inter-DC traffic. Vegas uses two
parameters α and β to control the lower and upper bound of
excessive packets in flight. We experiment the default setting
(α = 2, β = 4) and scaled by 10 setting (α = 20, β = 40) to
show the throughput and latency trade-off. BBR aims to drive
the congestion control to the theoretical optimal point [32]
with maximized throughput and minimized latency, based on
accurate bandwidth and RTT probing. GEMINI is the transport
protocol proposed in this paper. We adopt the default setting
(Table IV) throughout all experiments in this paper if not
specified. The ECN marking is configured within DCN.

0

5

10

15

R
T

T
 (m

s)

=0.2 =0.4 =0.6

8 4 2 1 0.5 0.2
T (ms)

0

250

500

750

1000

T
hr

ou
gh

pu
t (

m
bp

s)

Fig. 10. RTT and throughput of inter-DC flows that bottlenecked at a WAN
link. GEMINI achieves equally high throughput (944 mbps) with much lower
latency (> 7×) compared to TCP Cubic (> 100 ms).

B. Throughput and Latency

We show that GEMINI achieves high throughput and low
latency under both DCN congestion and WAN congestion.

Handling Congestion in DCN. ECN-based DCN congestion
control module needs to cope with the mismatch between DC
switch shallow buffer and high-BDP inter-DC traffic so as
to strike a good balance between latency and throughput. We
show that, by adding BDP-aware scale factor F , the mismatch
issue can be mitigated to a great extent.

To demonstrate that, we generate many-to-one long flows
sharing one DC switch bottleneck link. We perform two
experiments, with all intra-DC flows in the first one and all
inter-DC flows in the second. The RTT-based WAN congestion
control module is disabled here for GEMINI (the module will
not work even if we enable it, because the RTT threshold itself
will filter our the DCN congestion). We set the ECN marking
threshold K to 20, 40, 80, 160, 320 packets.

Results show that there is little gap between GEMINI and
DCTCP for the intra-DC flows. The average RTTs of inter-DC
flows are also similar (so the results are neglected here). The
throughputs of inter-DC flows are shown in Figure 9. GEMINI
maintains slightly higher throughput (938 mbps) than DCTCP
(899 mbps) when setting K as high as 320 packets. Setting
a higher threshold is prohibitive given limited buffer left to
avoid packet losses under bursty traffic.

Handling Congestion in WAN. GEMINI leverages delay
signal for WAN congestion control. To demonstrate the ef-
fectiveness of the congestion control in WAN, we run many-
to-one static flows sharing one bottleneck link in WAN,
with varying T and β settings. The results are shown in
Figure 10. In general, GEMINI maintains near full throughput
with queueing-delayed RTTs no more than 20 ms. Compared
to the transports that leverage loss signals in WAN, GEMINI
achieves similar high throughput at the cost of much lower
latency (e.g., by > 7× compared to Cubic that suffers from
> 100 ms queueing delay).

Parameter Sensitivity. GEMINI works well under a wide
range of parameter settings. To achieve low latency, DCTCP
recommends to set ECN marking threshold as low as 20
packets for 1 Gbps DCN. This low ECN threshold significantly

8

0 50 100 150 200 250
Time (s)

0

25

50

75

100
T

hr
ou

gh
pu

t (
m

bp
s)

Cubic

0 50 100 150 200 250
Time (s)

0

25

50

75

100

T
hr

ou
gh

pu
t (

m
bp

s)

DCTCP

0 50 100 150 200 250
Time (s)

0

25

50

75

100

T
hr

ou
gh

pu
t (

m
bp

s)

BBR

0 50 100 150 200 250
Time (s)

0

25

50

75

100

T
hr

ou
gh

pu
t (

m
bp

s)

Gemini

Fig. 11. GEMINI converges quickly, fairly and stably.

4 8 16 32 64
RTT2 / RTT1 (RTT1 = 200 s)

0.1

1

10

G
oo

dp
ut

2
/ G

oo
dp

ut
1

Ideal
Cubic
DCTCP

Vegas
BBR
Gemini

Fig. 12. RTT-fairness. RTT1 and RTT2 are the intra-DC and inter-DC RTTs
respectively. GEMINI achieves much better bandwidth fair-sharing.

hurts throughput of DCTCP for large-BDP inter-DC traffic
(70% degradation in our experiment result). In fact, DCTCP
starts to degrade the throughput when K is set to lower than
300 packets. For GEMINI, the throughput is not degraded
until the threshold is set to 100 packets. A higher T leads
to higher throughput at the cost of slightly higher RTT. Lower
β results in better throughput but sacrifices convergence speed.
We recommend to set T = 5ms and β = 0.2. T is a little bit
higher than needed in this case, leaving more room for higher
RTT networks. In practice, this is also necessary to filter out
the interference from DCN queueing delay (usually < 1 ms).

C. Convergence, Stability and Fairness

To evaluate the convergence and stability of GEMINI, we
first start a group of 10 flows from one server. At 50 seconds,
we start a second group of flows from another server in the
same rack. At 100 seconds, we start a third group of flows from
another rack in the same DC. All flows run for 150 seconds
and share the same destination server in a remote DC.

Figure 11 shows the throughput dynamics (one flow is
shown for each flow group). GEMINI guarantees fair con-
vergence given its AIMD nature. In fact, GEMINI converges
quickly and stably under both DCN congestion (50–100 secs)
and WAN congestion (100–200 secs). For example, during
100–150 secs, the average Jain’s fairness index [33] of GEMINI
is 0.99, much better than the other protocols.

Fairness is important for good tail performance. RTT un-
fairness [29], [30] is the major challenge in achieving per-flow
bandwidth fair-sharing in cross-DC networks, where intra-DC
and inter-DC traffics with different RTTs coexist. We show
that, good RTT-fairness can be achieved by GEMINI with
the factor h and the scale factor F . To demonstrate that,
we generate 4 inter-DC flows and 4 intra-DC flows sharing

the same bottleneck link inside DC. The intra-DC RTT is
∼ 200µs. With tc NETEM [20], the inter-DC RTT is set to
4×, 8×, 16×, 32×, 64× the intra-DC RTT. All ECN-enabled
protocols adopt the same ECN threshold of 300 packets for
fair comparison. The experiment result is shown in Figure 12.
While Cubic and DCTCP achieve proportional RTT-fairness
and BBR skews towards large RTT flows, GEMINI maintains
equal bandwidth fair-sharing regardless of the varying RTTs.

D. Realistic Workloads

We evaluate GEMINI under realistic workloads. The work-
loads are generated based on traffic patterns that have been ob-
served in a data center supporting web search [9]. Flows arrive
by the Poisson process. The source and destination is chosen
uniformly random from a configured IP pool. The workload
is heavy-tailed with about 50% small flows (size < 100 KB)
while 80% of all bytes belong to the 10% large flows (size
> 10 MB). We run the workload with a publicly available
traffic generator that has been used by other work [34], [35].
Similar to prior work [9], [36], we use flow completion time
(FCT) as the main performance metric.

Traffic Pattern 1: Inter-DC traffic, highly congested in
WAN. In this experiment, all flows cross the WAN segment.
The average utilization of the inter-DC WAN link is ∼90%.
The DC border routers are highly congested, while intra-DC
links have much lower utilization (∼11.25–45%).

The experiment results are shown in Figure 13 and 14:
(1) For small flow FCT, GEMINI performs better than Cubic,
DCTCP and BBR on both average and 99th tail. Cubic and
DCTCP suffer from the large queueing delay in WAN segment
while GEMINI well handles that with RTT signal. BBR suffers
a lot from loss as the misestimates of bandwidth and RTT are
magnified by high congestion. BBR does not react to loss
events explicitly until loss rate > 20% (as a protection). This
design choice benefits the long-term throughput while hurts
short-term latency. (2) For large flow FCT, GEMINI performs
much better than Vegas. The default parameter setting for
Vegas is very conservative (α = 2, β = 4), leading to poor
throughput of large flows. Setting larger thresholds in Vegas-
10 (α = 20, β = 40) improves throughput but hurts latency of
small flows. (3) For overall FCT, GEMINI performs the best
among all experimented transports.

Traffic Pattern 2: Mixed traffic, highly congested both
in WAN and DCN. In this experiment, the source and the
destination of each flow is chosen uniformly random among all
servers. Intra-DC and inter-DC traffics coexist in the network.
The average utilization of the inter-DC WAN link is ∼90%.
The average utilization of the link from the DC switch to the
border router is ∼67.5%.

The experiment results are shown in Figure 15 and 16: (1)
For small flow FCT, GEMINI performs one of the best among
experimented transports. In fact, GEMINI has consistently low
packet loss rates (< 10×10−5) under both traffic patterns. BBR
suffers from high losses (> 0.1%) again. (2) For large flow
FCT, GEMINI performs better than Cubic and Vegas. Vegas

9

0

100

200

300

FC
T

 (m
s)

Cubic
Cubic+ECN
DCTCP
Vegas

Vegas-10
BBR
Gemini

(a) Small Flow - Average

0

100

200

300

400

FC
T

 (m
s)

(b) Small Flow - 99th Tail

0

2000

4000

6000

8000

FC
T

 (m
s)

(c) Large Flow - Average

0

200

400

600

FC
T

 (m
s)

(d) All Flow - Average
Fig. 13. [Large-scale 1Gbps Testbed] FCT results under traffic pattern 1: Inter-DC traffic, highly congested in WAN. Small flow: Size < 100 KB. Large flow:
Size > 10 MB. GEMINI achieves the best or second best results in every case of Figure 13-16, while other protocols have performance hits in certain cases.

0

20

40

60

FC
T

 (m
s)

Cubic
Cubic + ECN
DCTCP
Vegas

Vegas-10
BBR
Gemini

(a) Small Flow - Average

0

20

40

60

80

FC
T

 (m
s)

(b) Small Flow - 99th Tail

0

500

1000

FC
T

 (m
s)

(c) Large Flow - Average

0

50

100

FC
T

 (m
s)

(d) All Flow - Average
Fig. 14. [Small-scale 10Gbps Testbed] FCT results under traffic pattern 1: Inter-DC traffic, highly congested in WAN.

0

50

100

150

200

FC
T

 (m
s)

Cubic
Cubic+ECN
DCTCP
Vegas

Vegas-10
BBR
Gemini

(a) Small Flow - Average

0

200

400

600

FC
T

 (m
s)

(b) Small Flow - 99th Tail

0

5000

10000

15000

20000

FC
T

 (m
s)

(c) Large Flow - Average

0

500

1000

FC
T

 (m
s)

(d) All Flow - Average
Fig. 15. [Large-scale 1Gbps Testbed] FCT results under traffic pattern 2: mixed inter-DC and intra-DC traffic, highly congested both in WAN and DCN.

0

10

20

30

FC
T

 (m
s)

Cubic
Cubic + ECN
DCTCP
Vegas

Vegas-10
BBR
Gemini

(a) Small Flow - Average

0

50

100

150

FC
T

 (m
s)

(b) Small Flow - 99th Tail

0

500

1000

FC
T

 (m
s)

(c) Large Flow - Average

0

50

100

FC
T

 (m
s)

(d) All Flow - Average
Fig. 16. [Small-scale 10Gbps Testbed] FCT results under traffic pattern 2: mixed inter-DC and intra-DC traffic, highly congested both in WAN and DCN.

does not perform well because it cannot control congestion
in WAN and DCN simultaneously. GEMINI can identify and
react to congestion in DCN and WAN differently using ECN
and RTT signals respectively. (3) For overall FCT, GEMINI
performs one of the best among all experimented transports.

V. RELATED WORK

Wide Area Network Transports. Cubic [21] is the default
TCP congestion control in the Linux system. It achieves high
scalability and proportional RTT-fairness by growing window
with a cubic function of time. Vegas [11] is the seminal
transport protocol that uses delay signal to avoid intrinsic high
loss and queueing delay of loss-based transports. After that,
many WAN transports [13], [14], [45], [46] are proposed to use
delay signal. These transports consider WAN only and usually
suffer a lot from the intra-DC congestion in cross-DCN.

Datacenter Network Transports. DCTCP [9] detects net-
work congestion with ECN and react in proportion to the mea-
sured extent of congestion. Following that, many ECN-based
transports [10], [47]–[49] are proposed for DCN congestion
control. The other line of work leverages delay signal with

microsecond-level accuracy for congestion feedback, which is
enabled by recent advances [12], [50], [51] in NIC technology.
For example, TIMELY [12] and RoGUE [52] use delay signal
for RDMA congestion control. We show that ECN or delay
signal alone is insufficient for cross-DC congestion control.

VI. CONCLUSION

As geo-distributed applications become prevalent, cross-
DC communication gets increasingly important. We inves-
tigate existing transports and find that they leverage either
ECN or delay signal alone, which cannot accommodate the
heterogeneity of cross-DC networks. Motivated by this, we
design GEMINI, a solution for cross-DC congestion control
that integrates both ECN and delay signal. GEMINI uses the
delay signal to bound the total in-flight traffic end-to-end,
while ECN is used to control the per-hop queues inside a
DCN. We implement GEMINI with Linux kernel and com-
modity switches. Experiments show that GEMINI achieves
low latency, high throughput, fair and stable convergence, and
delivers lower FCTs compared to various transport protocols
(e.g., Cubic, Vegas, DCTCP and BBR) in cross-DC networks.

10

REFERENCES

[1] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” in SIGCOMM, 2011.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in SIGCOMM, 2013.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in SIGCOMM, 2013.

[4] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “Spanstore: Cost-effective geo-replicated storage spanning mul-
tiple cloud services,” in SOSP, 2013.

[5] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in SIG-
COMM, 2015.

[6] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in SoCC, 2015.

[7] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and
J. Rexford, “Optimizing bulk transfers with software-defined optical
wan,” in SIGCOMM, 2016.

[8] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching lan speeds,” in NSDI, 2017.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM, 2010.

[10] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in SIGCOMM, 2015.

[11] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM,
1994.

[12] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, D. Zats et al., “Timely: Rtt-based congestion
control for the datacenter,” in SIGCOMM, 2015.

[13] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” in ACM Queue, 2016.

[14] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in NSDI, 2018.

[15] A. Production, https://www.arista.com/en/products, Accessed in 2019.
[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the

social network’s (datacenter) network,” in SIGCOMM, 2015.
[17] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,

S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” in SIGCOMM, 2015.

[18] S. Bauer, R. Beverly, and A. Berger, “Measuring the state of ecn
readiness in servers, clients, and routers,” in IMC, 2011.

[19] M. Kühlewind, D. P. Wagner, J. M. R. Espinosa, and B. Briscoe, “Using
data center tcp (dctcp) in the internet,” in GLOBECOM, 2014.

[20] netem in Linux Foundation Wiki, https://wiki.linuxfoundation.org/
networking/netem, Accessed in 2019.

[21] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” in SIGOPS, 2008.

[22] K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion
avoidance in computer networks,” in TOCS, 1990.

[23] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ecn) to ip,” in RFC 3168, 2001.

[24] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM, 2004.

[25] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
stability, convergence, and fairness,” in SIGMETRICS, 2011.

[26] J. Corbet, TSO sizing and the FQ scheduler, Accessed in 2019, https:
//lwn.net/Articles/564978/.

[27] K. Nichols and V. Jacobson, “Controlling queue delay,” in ACM Queue,
2012.

[28] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM, 1988.
[29] T. V. Lakshman and U. Madhow, “The performance of tcp/ip for

networks with high bandwidth-delay products and random loss,” in ToN,
1997.

[30] P. Brown, “Resource sharing of tcp connections with different round trip
times,” in INFOCOM, 2000.

[31] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” in ToN, 1998.

[32] L. Kleinrock, “Power and deterministic rules of thumb for probabilistic
problems in computer communications,” in ICC, 1979.

[33] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems,” 1984.

[34] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng,
“Clicknp: Highly flexible and high-performance network processing with
reconfigurable hardware,” in SIGCOMM, 2016.

[35] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service
multi-queue data centers,” in NSDI, 2016.

[36] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
SIGCOMM, 2013.

[37] P. Goyal, A. Narayan, F. Cangialosi, D. Raghavan, S. Narayana, M. Al-
izadeh, and H. Balakrishnan, “Elasticity detection: A building block for
internet congestion control,” in arXiv CoRR, 2018, [Online]. Available:
https://arxiv.org/abs/1802.08730.

[38] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in NSDI, 2018.

[39] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in SIG-
COMM, 2016.

[40] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “Ac/dc tcp: Virtual congestion control enforcement for
datacenter networks,” in SIGCOMM, 2016.

[41] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in SIGCOMM, 2013.

[42] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi,
“Split tcp for mobile ad hoc networks,” in GLOBECOM, 2002.

[43] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in SIGCOMM, 2013.

[44] F. Le, E. Nahum, V. Pappas, M. Touma, and D. Verma, “Experiences
deploying a transparent split tcp middlebox and the implications for
nfv,” in HotMiddlebox, 2015.

[45] C. Jin, D. X. Wei, and S. H. Low, “Fast tcp: motivation, architecture,
algorithms, performance,” in INFOCOM, 2004.

[46] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound tcp approach
for high-speed and long distance networks,” in INFOCOM, 2006.

[47] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI, 2012.

[48] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in SIGCOMM, 2012.

[49] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
INFOCOM, 2013.

[50] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” in Technical Re-
port UCB/EECS-2015-155, EECS Department, University of California,
Berkeley, 2015.

[51] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Dx: Latency-based
congestion control for datacenters,” in ToN, 2016.

[52] Y. Le, B. Stephens, A. Singhvi, A. Akella, and M. Swift, “Rogue: Rdma
over generic unconverged ethernet,” in SoCC, 2018.

[53] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in SIGCOMM, 2002.

[54] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-
cessor sharing flows in the internet,” in IWQoS, 2005.

[55] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in SIGCOMM,
2011.

[56] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM, 2012.

[57] D. Han, R. Grandl, A. Akella, and S. Seshan, “Fcp: A flexible transport
framework for accommodating diversity,” in SIGCOMM, 2013.

[58] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” in SIGCOMM,
2014.

[59] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control for
datacenter networks,” in NSDI, 2017.

11

[60] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp,”
in NSDI, 2011.

[61] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in SIGCOMM, 2011.

[62] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,
and T. Moscibroda, “Multi-path transport for rdma in datacenters,” in
NSDI, 2018.

[63] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in SIGCOMM, 2017.

[64] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. Moore, G. Antichi,
and M. Wojcik, “Re-architecting datacenter networks and stacks for low
latency and high performance,” in SIGCOMM, 2017.

[65] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in SIGCOMM, 2018.

[66] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” in SIGCOMM, 2013.

[67] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “Pcc:
Re-architecting congestion control for consistent high performance,” in
NSDI, 2015.

[68] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “Pcc vivace: Online-learning congestion control,” in NSDI,
2018.

[69] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an action:
Rapid precise packet loss notification in data center,” in NSDI, 2014.

12

