
Towards Domain-Specific Network Transport
for Distributed DNN Training

Hao Wang1, Han Tian1, Jingrong Chen2, Xinchen Wan1, Jiachen Xia1,
Gaoxiong Zeng1, Wei Bai3*, Junchen Jiang4, Yong Wang1, Kai Chen1

1

1iSING Lab, Hong Kong University of Science and Technology
2Duke University, 3Microsoft, 4University of Chicago

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI’24)

*Now with NVIDIA

DNN empowers a wide range of applications

2

Face
Recognition

Automatic
Driving

ChatGPT DALL·E

Training DNN is time-consuming

3

Complicated models Huge amount of data

DNN model can be very
complicated, with tens to

hundreds of layers and
millions of neurons.

Dataset is huge, e.g.,
ImageNet contains more
than 14 million images.
Llama2 uses 2 trillion
tokens of pretraining

data.

Model BERTBASE Llama2-70B
Training time 4 days, 16 x TPU v3 1.7M GPU hours,

A100
https://arxiv.org/pdf/2307.09288.pdfhttps://arxiv.org/pdf/1810.04805.pd

f

https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/1810.04805.pdf

Accelerating DNN training via data parallelism

4

 Example of data parallelism of
synchronous SGD under the Parameter
Server architecture

 Note that data parallelism is also
widely used in LLM training, e.g.,
Zero and FSDP.

https://arxiv.org/pdf/2304.11277.pdfFSDP workflow

https://arxiv.org/pdf/2304.11277.pdf

The speedup of data parallelism: a close look

5

 Speedup with more GPUs: not always
linear!

https://arxiv.org/pdf/1609.06870.pdf PyTorch FSDP:
https://arxiv.org/pdf/2304.11277.pdf

 Root cause for failing to achieve
linear speedup: communication
cost!

Near-linear speedup
with more GPUs within a
server

Performance degrades
when crossing multiple
servers

Communication
becomes the bottleneck!

T5-11B (LLM)

https://arxiv.org/pdf/1609.06870.pdf
https://arxiv.org/pdf/2304.11277.pdf

Application layer solution: reducing traffic volume

6

• Reduce communication bandwidth
by only sending important gradients

• Use gradient magnitude as a
simple heuristics for importance

• Only gradients larger than a
threshold are transmitted (e.g., top
0.1%)

Gradient Sparsification Gradient Quantization
• Obtain the min and max gradient

values of each layer

• Represent the gradients with low-
precision float (e.g., 32 bits -> 8 bits)

• The results are composed by an array
containing the quantized value, and
the min and max value

Reducing the number
of gradients
transmitted

Reducing the
precision of gradients

transmitted

Reducing traffic volume doesn’t eliminate the
problem

7

 Lesson learned: tail latency is often caused by the communication
pattern, not only the traffic volume. This calls for network
transport solutions!

ResNet-18While average FCT improves effectively,
tail FCT remains high, due to packet

loss and retransmission timeout (RTO)

Gray failure: potential pitfalls of large-scale training

8

 Transport for AI-centric Networking (AICN) must be
resilient to such gray failure.

Gray Failure: The Achilles’ Heel of Cloud-Scale
Systems

• Fault-tolerance and reliability are
crucial for distributed training

• Gray failure refers to subtle and
often undetectable issues in data
center

• A common example of gray failure is
the persistent and silent packet
drops experienced by a network
device or link.

persistent and silent
packet drops

Observation 1: bounded-loss tolerance

9

 The DNN training process is bounded-loss tolerant: certain packet drops don’t
affect model convergence much!

Dataset Used: Caltech101

Convergence rounds (&
model quality) remain
unaffected, with 1-2%

packet drops

Insight behind observation 1

10

 The learning direction doesn’t deviate much:
With bounded packet losses, the direction of
the gradient vector (or tensor) will not deviate
much from the original, steepest direction.

 The learning step size doesn’t change much:
With bounded packet losses, the step length
of the gradient vector remains similar.

 The SGD algorithm is robust to loss (self-
healing): SGD recalculates the learning
objective function towards the optimal at
each step, noise caused by loss in earlier
iterations won’t be carried to latter iterations,
but instead can be fixed later!

DNN training with SGD

�1 �2 …
Parameter Server

��[1/99 (�2 + �3…+�100)] = ��[1/100(�1 + �2 + �3… + �100)]

No packet
lossWith packet
loss

Inspiration from observation 1

11

M
od

el
 q

ua
lit

y

Communication
efficiency

UDP (or RDMA-UD):
Low communication overhead, but
no packet delivery guarantee at all,
leading to very bad model quality

TCP (or RDMA-RC):
Good model quality with
100% reliability, but suffer
from high communication
overhead (long tail latency)

Better

MLT:
Cutting long tail latency with
bounded-loss tolerance, while
maintaining good model quality;
Resilient to gray failure in the
network

 Reliability requirement for AI-centric Networking (AICN)

Observation 2: Different gradients have different impacts

12

 Losing different gradients may generate different impacts on
model convergence or quality!

ResNet50 on Cifar100

Layer-wise: back-layer
gradients are more

sensitive to loss

Magnitude-wise: larger
gradients are more

sensitive to loss

Insight behind magnitude-wise impact

13

 Magnitude-wise impact: larger gradients are less loss-tolerant than small
gradients • Larger gradient contains stronger correlation

between the extracted feature and the objective task
than smaller gradient does, more impact on model
accuracy!

• Larger gradient indicates bigger learning step size,
smaller gradient indicates smaller step size, more
impact on convergence speed!

Learning step with
larger gradients
Learning step with
smaller gradients

Insight behind layer-wise impact

14

 Layer-wise impact: front-layer gradients are more loss-tolerant than
back-layer gradients

• Front layers extract simple, class-independent
features and can be trained from almost all samples,
e.g., from pre-training dataset, thus easier to learn!

• Back layers extract class-specific features (e.g.,
earrings) and can be trained only from specific
samples with certain classes (e.g., women), thus
much harder to learn! Honglak Lee,

NIPS’10

ObjectsObject partsCurves/edgesPixels

Inspiration from observation 2

15

Not all gradients are
equal in terms of the

impacts on model
convergence and
training pipelining

When queue builds up
Prioritize front-layer gradients
over back-layer gradients, to
speed up training pipelining

Priority Queueing
(both at end-host and in network)

When buffer overflows

Selectively drop front-layer
gradients over back-layer

gradients, smaller gradients over
larger gradients, to maintain
model convergence/quality

Selective Dropping

Observation 3: Inter-packet order-independence

16

g1
1

g1
2

… g1
m

g2
1

g2
2

… g2m

…

gnm gnm … gnm

… … …

g1
1

g1
2

… g1
m

g2
1

g2
2

… g2m

…

gn
m

gn
m

… gn
m

… … …

Tensor Packets
(Order-independent)

Tensor

gradients

tensorID
offset

Packet
Tagging

tensorID
offset

tensorID
offset

gradients

gradients

gradients

Message

Serialize Deserialize

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
}

0101101…101101
Bit Stream 01011 101…1 01101

0101101…101101
Bit Stream

Person

Packet Stream
(Order needs to be maintained)

Traditional Network Apps

DNN Training

 One message multiple packets, thus packet ordering matters

 One packet multiple messages (gradients), thus inter-packets are
order-free

 The traffic in DNN training is periodic and predictable.

(Known Size)

(pre-determined buffer)

Inspiration from observation 3

17

For DNN training, we can break the tradeoff: per-
packet load balancing without worrying about out-of-
order issues!

Tradeoff for traditional
network applications

Per-flow ECMP:
coarse-grained, large flow
hash-collision, low
efficiency

Per-packet load balancing:
fine-grained, but suffer
from reordering problems

Flowlet-based load
balancing:
make a tradeoff in-
between

MLT - Machine Learning Transport for AI-centric networking

18

Bounded-loss
tolerance

Not all gradients are equal, in
terms of impacts on model
convergence/ quality and

training pipelining

Inter-packet order-
independence

Optimizing training efficiency with
gradient-aware queueing and dropping

Cutting tail latency with bounded-loss
tolerance

Enabling per-packet load balancing based on
packet-level order-independence

 To address the problem that cannot
be solved with application layer
solutions

 To improve model convergence and
speed up training pipelining

 To maximize network utilization and
minimize hotspots

 Inspired by the previous observations, MLT performs the
following domain-specific communication optimization:

MLT design overview

19

Priority queueing &
selective dropping

Per-packet load
balancing

Bounded-loss tolerant
transmission

Leaf
switch

Spine
switch

First, data are spread
onto multi-path to
minimize hotspots,
without worrying about
reordering issues

If congestion happens, switch
will perform priority queueing
and selective dropping, if
needed, to optimize training
efficiency

Finally, a bounded-loss tolerant
data transmission is implemented
to avoid long tail latency!

Bounded-loss tolerant data transmission

20

MLT Rate ControlTCP Congestion Control
• Slow start (exponential)
• Timeout
• 3 dupACK and fast recovery

• Line rate start
• No timeout
• No need fast recovery
• Timely-like RTT-base CC

① flow finish notice

S R
② retransmit request
 (or receive completed)

bound

send
buffer

recv
buffer

txrate = txrate·(1- β·(1-Thigh/rtt_new))
multiplicative decrease

rtt_new > Thigh

congestion
avoidance

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

line rate
start

txrate = LineRate

Feedback!

rtt_new > Thigh

txrate = txrate + α
additive increase

rtt_new < Tlow
rtt_diff < 0

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

Feedback!

retransmit request
retransmit missing segment

Gradient-aware priority queueing & selective
dropping

21

Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at

switch

Gradients/parameters
high

low

Priority queueing to
speed up training

pipelining: front layers
first

Gradient-aware priority queueing & selective
dropping

22

Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at

switch

Gradients/parameters
high

low

Re-interpret ECN/RED
for selective dropping*:
selectively drop packets
with smaller gradients

ECN threshold

ECN threshold

ECN threshold

ECN threshold

Set 2-bit ECN at packet
header:
 00 for packets with small

gradients
 10 for packets with large

gradients

Increased ECN marking
thresholds to try to drop
front-layer gradients first,
while keeping back-layer

gradients

*Hu S., Chen K. et al, Aeolus: A
Building Block for Proactive
Transport in Datacenters,
SIGCOMM 2020

Implementation and testbed setting

23

Kernel TCPVMA Library

Bounded Loss
Transmission

Data packet Control signal

MLT

Socket

Packet Manipulation (Tx Path)
Packet
Tagging

Send(tenso
r)

Recv(&tensor)

ML
Framework

MXNet PyTorch TensorFlow

Middleware BytePS/Horovod/Specific Adapter

Packet Manipulation (Rx
Path)

VMA Library
Data
packet

Tensor
Partitionin

g
Rate ControlTransmissio

n
Control

Tensor
Constructio

n
Packet

Untaggin
g

Experiment Setting:
• Testbed: 8x GPU servers each with 8x 3090 GPUs, 4 Mellanox

SN2100 switches.
• Topology: 2x3 Spine-Leaf*, 100Gbps
• Models: ResNet50, VGG16, GoogleNet, Transformer, T5
• Comparison Target: vanilla ML frameworks, BytePS
*Each leaf switch has two 100Gbps links connecting to the spine
switch, thus logically we have two spine switches.

Speedup under different DNN models (Tensorflow,
PS)

24

ResNet50 VGG16

GoogleNet Transformer

Speedup under different ML frameworks

25

VGG16 MXNet

Transformer MXNet

VCG16 Pytorch

Transformer Pytorch

Network performance in larger-scale simulations

26Setting: topology 144 node leaf-spine, bandwidth 100Gbps, #servers/#workers 1/3

ResNet50
Avg FCT

ResNet50
Tail FCT

GoogleNet
Avg FCT

GoogleNet
Tail FCT

Conclusion

27

 MLT (Machine Learning Transport for AI-centric networking)
exploits domain-specific properties of deep learning to
optimize communication for distributed DNN training!
 MLT made three key observations:

• Bounded-loss tolerance
• Different gradients generate different impacts
• Inter-packet order-independence

 MLT conceived three main ideas:
• Cutting tail latency via bounded-loss tolerant data

transmission
• Improving training efficiency through gradient-aware

priority queueing and selective dropping
• Maximizing network utilization by enabling per-packet load

balancing due on inter-packet order-independence

Thank you!

