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DNN empowers a wide range of applications 
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Training DNN is time-consuming

3

Complicated models Huge amount of data

DNN model can be very 
complicated, with tens to 

hundreds of layers and 
millions of neurons.

Dataset is huge, e.g., 
ImageNet contains more 
than 14 million images.
Llama2 uses 2 trillion 
tokens of pretraining 

data.

Model BERTBASE Llama2-70B
Training time 4 days, 16 x TPU v3 1.7M GPU hours, 

A100
https://arxiv.org/pdf/2307.09288.pdfhttps://arxiv.org/pdf/1810.04805.pd
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Accelerating DNN training via data parallelism
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 Example of data parallelism of 
synchronous SGD under the Parameter 
Server architecture

 Note that data parallelism is also 
widely used in LLM training, e.g., 
Zero and FSDP.

https://arxiv.org/pdf/2304.11277.pdfFSDP workflow

https://arxiv.org/pdf/2304.11277.pdf


The speedup of data parallelism: a close look
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 Speedup with more GPUs: not always 
linear!

https://arxiv.org/pdf/1609.06870.pdf PyTorch FSDP: 
https://arxiv.org/pdf/2304.11277.pdf

 Root cause for failing to achieve 
linear speedup: communication 
cost!

Near-linear speedup 
with more GPUs within a 
server

Performance degrades 
when crossing multiple 
servers 

Communication 
becomes the bottleneck!

T5-11B (LLM)

https://arxiv.org/pdf/1609.06870.pdf
https://arxiv.org/pdf/2304.11277.pdf


Application layer solution: reducing traffic volume
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• Reduce communication bandwidth 
by only sending important gradients

• Use gradient magnitude as a 
simple heuristics for importance

• Only gradients larger than a 
threshold are transmitted (e.g., top 
0.1%)

Gradient  Sparsification Gradient Quantization
• Obtain the min and max gradient 

values of each layer

• Represent the gradients with low-
precision float (e.g., 32 bits -> 8 bits)

• The results are composed by an array 
containing the quantized value, and 
the min and max value

Reducing the number 
of gradients 
transmitted

Reducing the 
precision of gradients 

transmitted



Reducing traffic volume doesn’t eliminate the 
problem
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 Lesson learned: tail latency is often caused by the communication 
pattern, not only the traffic volume. This calls for network 
transport solutions!

ResNet-18While average FCT improves effectively, 
tail FCT remains high, due to packet 

loss and retransmission timeout (RTO)



Gray failure:  potential pitfalls of large-scale training
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 Transport for AI-centric Networking (AICN) must be 
resilient to such gray failure.

Gray Failure: The Achilles’ Heel of Cloud-Scale 
Systems

• Fault-tolerance and reliability are 
crucial for distributed training

• Gray failure refers to subtle and 
often undetectable issues in data 
center

• A common example of gray failure is 
the persistent and silent packet 
drops experienced by a network 
device or link.

persistent and silent 
packet drops



Observation 1: bounded-loss tolerance 

9

 The DNN training process is bounded-loss tolerant: certain packet drops don’t 
affect model convergence much!

Dataset Used: Caltech101 

Convergence rounds (& 
model quality) remain 
unaffected, with 1-2% 

packet drops



Insight behind observation 1 
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 The learning direction doesn’t deviate much: 
With bounded packet losses, the direction of 
the gradient vector (or tensor) will not deviate 
much from the original, steepest direction.

 The learning step size doesn’t change much:   
With bounded packet losses, the step length 
of the gradient vector remains similar.

 The SGD algorithm is robust to loss (self-
healing): SGD recalculates the learning 
objective function towards the optimal at 
each step, noise caused by loss in earlier 
iterations won’t be carried to latter iterations, 
but instead can be fixed later!

DNN training with SGD 

�1 �2 …
Parameter Server

��[1/99 (�2 + �3…+�100)] = ��[1/100(�1 + �2 + �3… + �100)]

No packet 
lossWith packet 
loss



Inspiration from observation 1
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Communication 
efficiency

UDP (or RDMA-UD): 
Low communication overhead, but 
no packet delivery guarantee at all, 
leading to very bad model quality

TCP (or RDMA-RC):
Good model quality with 
100% reliability, but suffer 
from high communication 
overhead (long tail latency)

Better

MLT:
Cutting long tail latency with 
bounded-loss tolerance, while 
maintaining good model quality;
Resilient to gray failure in the 
network 

 Reliability requirement for AI-centric Networking (AICN) 



Observation 2: Different gradients have different impacts

12

 Losing different gradients may generate different impacts on 
model convergence or quality!

ResNet50 on Cifar100 

Layer-wise: back-layer 
gradients are more 

sensitive to loss

Magnitude-wise: larger 
gradients are more 

sensitive to loss



Insight behind magnitude-wise impact
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 Magnitude-wise impact: larger gradients are less loss-tolerant than small 
gradients  • Larger gradient contains stronger correlation 

between the extracted feature and the objective task 
than smaller gradient does, more impact on model 
accuracy!

• Larger gradient indicates bigger learning step size, 
smaller gradient indicates smaller step size, more 
impact on convergence speed!

Learning step with 
larger gradients
Learning step with 
smaller gradients



Insight behind layer-wise impact

14

 Layer-wise impact: front-layer gradients are more loss-tolerant than 
back-layer gradients

• Front layers extract simple, class-independent 
features and can be trained from almost all samples, 
e.g., from pre-training dataset, thus easier to learn!

• Back layers extract class-specific features (e.g., 
earrings) and can be trained only from specific 
samples with certain classes (e.g., women), thus 
much harder to learn! Honglak Lee, 

NIPS’10

ObjectsObject partsCurves/edgesPixels



Inspiration from observation 2 
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Not all gradients are 
equal in terms of the 

impacts on model 
convergence and 
training pipelining

When queue builds up
Prioritize front-layer gradients 
over back-layer gradients, to 
speed up training pipelining  

Priority Queueing
(both at end-host and in network) 

When buffer overflows

Selectively drop front-layer 
gradients over back-layer 

gradients, smaller gradients over 
larger gradients, to maintain 
model convergence/quality

Selective Dropping 



Observation 3: Inter-packet order-independence
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Tensor Packets
(Order-independent)

Tensor

gradients

tensorID
offset

Packet 
Tagging

tensorID
offset

tensorID
offset

gradients

gradients

gradients

Message

Serialize Deserialize

message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
}

0101101…101101
Bit Stream 01011 101…1 01101

0101101…101101
Bit Stream

Person

Packet Stream
(Order needs to be maintained)

Traditional Network Apps

DNN Training

 One message multiple packets, thus packet ordering matters

 One packet multiple messages (gradients), thus inter-packets are 
order-free

  The traffic in DNN training is periodic and predictable.

(Known Size)

(pre-determined buffer)



Inspiration from observation 3 
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For DNN training, we can break the tradeoff: per-
packet load balancing without worrying about out-of-
order issues!

Tradeoff for traditional 
network applications 

Per-flow ECMP:
coarse-grained, large flow 
hash-collision, low 
efficiency  

Per-packet load balancing:
fine-grained, but suffer 
from reordering problems 

Flowlet-based load 
balancing:
make a tradeoff in-
between



MLT - Machine Learning Transport for AI-centric networking
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Bounded-loss 
tolerance  

Not all gradients are equal, in 
terms of impacts on model 
convergence/ quality and 

training pipelining

Inter-packet order-
independence

Optimizing training efficiency with 
gradient-aware queueing and dropping

Cutting tail latency with bounded-loss 
tolerance

Enabling per-packet load balancing based on 
packet-level order-independence

 To address the problem that cannot 
be solved with application layer 
solutions

 To improve model convergence and 
speed up training pipelining

 To maximize network utilization and 
minimize hotspots

 Inspired by the previous observations, MLT performs the 
following domain-specific communication optimization:



MLT design overview
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Priority queueing & 
selective dropping

Per-packet load 
balancing

Bounded-loss tolerant 
transmission

Leaf 
switch

Spine 
switch

First, data are spread 
onto multi-path to 
minimize hotspots, 
without worrying about 
reordering issues 

If congestion happens, switch 
will perform priority queueing 
and selective dropping, if 
needed, to optimize training 
efficiency

Finally, a bounded-loss tolerant 
data transmission is implemented 
to avoid long tail latency!



Bounded-loss tolerant data transmission 
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MLT Rate ControlTCP Congestion Control
• Slow start (exponential)
• Timeout
• 3 dupACK and fast recovery

• Line rate start
• No timeout
• No need fast recovery
• Timely-like RTT-base CC

① flow finish notice

S R
② retransmit request
     (or receive completed)

bound

send
buffer

recv
buffer

txrate = txrate·(1- β·(1-Thigh/rtt_new))
multiplicative decrease

rtt_new > Thigh

congestion
avoidance 

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new 

feedback(rtt_new)

line rate 
start



txrate = LineRate

Feedback!

rtt_new > Thigh

txrate = txrate + α
additive increase

rtt_new < Tlow
rtt_diff < 0

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new 

feedback(rtt_new)

Feedback!

retransmit request
retransmit missing segment 



Gradient-aware priority queueing & selective 
dropping
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Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on 
worker/server Queueing/dropping at 

switch

Gradients/parameters
high

low

Priority queueing to 
speed up training 

pipelining: front layers 
first



Gradient-aware priority queueing & selective 
dropping
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Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on 
worker/server Queueing/dropping at 

switch

Gradients/parameters
high

low

Re-interpret ECN/RED 
for selective dropping*: 
selectively drop packets 
with smaller gradients 

ECN threshold

ECN threshold

ECN threshold

ECN threshold

Set 2-bit ECN at packet 
header: 
 00 for packets with small 

gradients
 10 for packets with large 

gradients

Increased ECN marking 
thresholds to try to drop 
front-layer gradients first, 
while keeping back-layer 

gradients

*Hu S., Chen K. et al, Aeolus: A 
Building Block for Proactive 
Transport in Datacenters, 
SIGCOMM 2020 



Implementation and testbed setting
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Kernel TCPVMA Library

Bounded Loss 
Transmission 

Data packet Control signal

MLT

Socket 

Packet Manipulation (Tx Path)
Packet
Tagging

Send(tenso
r)

Recv(&tensor)

ML 
Framework

MXNet PyTorch TensorFlow 

Middleware BytePS/Horovod/Specific Adapter 

Packet Manipulation (Rx 
Path)

VMA Library
Data 
packet

Tensor
Partitionin

g
Rate ControlTransmissio

n
Control

Tensor
Constructio

n
Packet

Untaggin
g

Experiment Setting:
• Testbed: 8x GPU servers each with 8x 3090 GPUs, 4 Mellanox 

SN2100 switches.
• Topology: 2x3 Spine-Leaf*, 100Gbps
• Models: ResNet50, VGG16, GoogleNet, Transformer, T5
• Comparison Target: vanilla ML frameworks, BytePS
*Each leaf switch has two 100Gbps links connecting to the spine 
switch, thus logically we have two spine switches. 



Speedup under different DNN models (Tensorflow, 
PS)
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ResNet50 VGG16

GoogleNet Transformer



Speedup under different ML frameworks
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VGG16 MXNet

Transformer MXNet

VCG16 Pytorch

Transformer Pytorch



Network performance in larger-scale simulations

26Setting: topology 144 node leaf-spine, bandwidth 100Gbps, #servers/#workers 1/3

ResNet50
Avg FCT

ResNet50
Tail FCT

GoogleNet
Avg FCT

GoogleNet
Tail FCT



Conclusion
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 MLT (Machine Learning Transport for AI-centric networking) 
exploits domain-specific properties of deep learning to 
optimize communication for distributed DNN training!
 MLT made three key observations:

• Bounded-loss tolerance
• Different gradients generate different impacts
• Inter-packet order-independence

 MLT conceived three main ideas:
• Cutting tail latency via bounded-loss tolerant data 

transmission
• Improving training efficiency through gradient-aware 

priority queueing and selective dropping
• Maximizing network utilization by enabling per-packet load 

balancing due on inter-packet order-independence

Thank you!


